\( x\xrightarrow{\hspace{1mm}CUBIC\hspace{1mm}} CUBIC(x) = -4x^{3}-10x^{2}+7x-15 \)
WANTED: The\( \hspace{10mm} \left.x\right|_{x\gets\bbox[1pt,yellow]{+2+h}}\xrightarrow{\hspace{1mm} CUBIC\hspace{1mm}}\left. CUBIC(x)\right|_{x\gets\bbox[1pt,yellow]{+2+h}} =\left. -4x^{3}-10x^{2}+7x-15\right|_{x\gets\bbox[1pt,yellow]{+2+h}} \)
\(
\hspace{10mm}
\left.x\right|_{x\gets\bbox[1pt,yellow]{+2+h}}\xrightarrow{\hspace{1mm} CUBIC\hspace{1mm}}\left. CUBIC(x)\right|_{x\gets\bbox[1pt,yellow]{+2+h}}
=\left. -4x^{3}-10x^{2}+7x-15\right|_{x\gets\bbox[1pt,yellow]{+2+h}}
\)
\(
\hspace{10mm}
\bbox[1pt,yellow]{
+2+h
}
\xrightarrow{\hspace{1mm} CUBIC\hspace{1mm}} CUBIC(
\bbox[1pt,yellow]{
+2+h
}
)
=
\bbox[1pt,00FF99]{
-4
}
{\large (}
\bbox[1pt,yellow]{
+2+h
}
{\large )}^{3}\hspace{-1mm}
\bbox[1pt,00FF99]{
-10
}
{\large (}
\bbox[1pt,yellow]{
+2+h
}
{\large )}^{2}\hspace{-1mm}
\bbox[1pt,00FF99]{
+7
}
{\large (}
\bbox[1pt,yellow]{
+2+h
}
{\large )}
\bbox[1pt,00FF99]{
-15
}
\)
\[ \hspace{10mm} +2+h\xrightarrow{\hspace{1mm} CUBIC\hspace{1mm}} CUBIC(+2+h) = \bbox[1pt,00FF99]{ -4 } {\LARGE ( } \bbox[1pt,yellow]{ (+2)^{3}+3\cdot(+2)^{2}h+3\cdot(+2)h^{2}+h^{3} } {\LARGE )} \bbox[1pt,00FF99]{ -10 } {\LARGE (} \bbox[1pt,yellow]{ (+2)^{2}+2\cdot(+2)h+h^{2} } {\LARGE )} \bbox[1pt,00FF99]{ +7 } {\LARGE (} \bbox[1pt,yellow]{ +2+h } {\LARGE )} \bbox[1pt,00FF99]{ -15 } \] \[ \hspace{76mm} = \bbox[1pt,00FF99]{ -4 } {\LARGE (} \hspace{2mm} \bbox[1pt,yellow]{ +8 } \hspace{1mm} \bbox[1pt,yellow]{ } \hspace{7mm} \bbox[1pt,yellow]{ +12h } \hspace{9mm} \bbox[1pt,yellow]{ +6h^{2} } \hspace{6mm} \bbox[1pt,yellow]{ +h^{3} } \hspace{0mm} {\LARGE )} \bbox[1pt,00FF99] { -10 } {\LARGE (} \hspace{1mm} \bbox[1pt,yellow]{ +4 } \hspace{8mm} \bbox[1pt,yellow]{ +4h } \hspace{5mm} \bbox[1pt,yellow]{ +h^{2} } \hspace{1mm} {\LARGE )} \bbox[1pt,00FF99]{ +7 } {\LARGE (} \bbox[1pt,yellow]{ +2+h } {\LARGE )} \bbox[1pt,00FF99] { -15 } \]
\[ \hspace{10mm} +2+h\xrightarrow{\hspace{1mm} CUBIC\hspace{1mm}} CUBIC(+2+h) = \bbox[1pt,00FF99]{ -4 } {\LARGE ( } \bbox[1pt,yellow]{ (+2)^{3}+3\cdot(+2)^{2}h+3\cdot(+2)h^{2}+h^{3} } {\LARGE )} \bbox[1pt,00FF99]{ -10 } {\LARGE (} \bbox[1pt,yellow]{ (+2)^{2}+2\cdot(+2)h+h^{2} } {\LARGE )} \bbox[1pt,00FF99]{ +7 } {\LARGE (} \bbox[1pt,yellow]{ +2+h } {\LARGE )} \bbox[1pt,00FF99]{ -15 } \] \[ \hspace{76mm} = \bbox[1pt,00FF99]{ -4 } {\LARGE (} \hspace{2mm} \bbox[1pt,yellow]{ +8 } \hspace{1mm} \bbox[1pt,yellow]{ } \hspace{7mm} \bbox[1pt,yellow]{ +12h } \hspace{9mm} \bbox[1pt,yellow]{ +6h^{2} } \hspace{6mm} \bbox[1pt,yellow]{ +h^{3} } \hspace{0mm} {\LARGE )} \bbox[1pt,00FF99] { -10 } {\LARGE (} \hspace{1mm} \bbox[1pt,yellow]{ +4 } \hspace{8mm} \bbox[1pt,yellow]{ +4h } \hspace{5mm} \bbox[1pt,yellow]{ +h^{2} } \hspace{1mm} {\LARGE )} \bbox[1pt,00FF99]{ +7 } {\LARGE (} \bbox[1pt,yellow]{ +2+h } {\LARGE )} \bbox[1pt,00FF99] { -15 } \] \[ \hspace{76mm} = \hspace{6mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32 } \hspace{7mm} \bbox[1pt,F4F4F4]{ -48h } \hspace{7mm} \bbox[1pt,F4F4F4]{ -24h^{2} } \hspace{5mm} \bbox[1pt,F4F4F4]{ -4h^{3} } \hspace{0mm} {\LARGE )} \hspace{3mm} + \hspace{3mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{4mm} \bbox[1pt,F4F4F4]{ -40h } \hspace{3mm} \bbox[1pt,F4F4F4]{ -10h^{2} } \hspace{0mm} {\LARGE )} \hspace{3mm} + \hspace{2mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ +14 } \hspace{1mm} \bbox[1pt,F4F4F4]{ +7h } \hspace{0mm} {\LARGE )} \bbox[1pt,F4F4F4]{ -15 } \]
\[ \hspace{10mm} +2+h\xrightarrow{\hspace{1mm} CUBIC\hspace{1mm}} CUBIC(+2+h) = \bbox[1pt,00FF99]{ -4 } {\LARGE ( } \bbox[1pt,yellow]{ (+2)^{3}+3\cdot(+2)^{2}h+3\cdot(+2)h^{2}+h^{3} } {\LARGE )} \bbox[1pt,00FF99]{ -10 } {\LARGE (} \bbox[1pt,yellow]{ (+2)^{2}+2\cdot(+2)h+h^{2} } {\LARGE )} \bbox[1pt,00FF99]{ +7 } {\LARGE (} \bbox[1pt,yellow]{ +2+h } {\LARGE )} \bbox[1pt,00FF99]{ -15 } \] \[ \hspace{76mm} = \bbox[1pt,00FF99]{ -4 } {\LARGE (} \hspace{2mm} \bbox[1pt,yellow]{ +8 } \hspace{1mm} \bbox[1pt,yellow]{ } \hspace{7mm} \bbox[1pt,yellow]{ +12h } \hspace{9mm} \bbox[1pt,yellow]{ +6h^{2} } \hspace{6mm} \bbox[1pt,yellow]{ +h^{3} } \hspace{0mm} {\LARGE )} \bbox[1pt,00FF99] { -10 } {\LARGE (} \hspace{1mm} \bbox[1pt,yellow]{ +4 } \hspace{8mm} \bbox[1pt,yellow]{ +4h } \hspace{5mm} \bbox[1pt,yellow]{ +h^{2} } \hspace{1mm} {\LARGE )} \bbox[1pt,00FF99]{ +7 } {\LARGE (} \bbox[1pt,yellow]{ +2+h } {\LARGE )} \bbox[1pt,00FF99] { -15 } \] \[ \hspace{76mm} = \hspace{6mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32 } \hspace{7mm} \bbox[1pt,F4F4F4]{ -48h } \hspace{7mm} \bbox[1pt,F4F4F4]{ -24h^{2} } \hspace{5mm} \bbox[1pt,F4F4F4]{ -4h^{3} } \hspace{0mm} {\LARGE )} \hspace{3mm} + \hspace{3mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{4mm} \bbox[1pt,F4F4F4]{ -40h } \hspace{3mm} \bbox[1pt,F4F4F4]{ -10h^{2} } \hspace{0mm} {\LARGE )} \hspace{3mm} + \hspace{2mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ +14 } \hspace{1mm} \bbox[1pt,F4F4F4]{ +7h } \hspace{0mm} {\LARGE )} \bbox[1pt,F4F4F4]{ -15 } \] \[ \hspace{76mm} = \hspace{6mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32h^{0} } \hspace{2mm} \bbox[1pt,F4F4F4]{ -48h^{+1} } \hspace{2mm} \bbox[1pt,F4F4F4]{ -24h^{+2} } \hspace{2mm} \bbox[1pt,F4F4F4]{ -4h^{+3} } \hspace{0mm} {\LARGE )} \hspace{3mm} + \hspace{3mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ -40h^{0} } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40h^{+1} } \hspace{0mm} \bbox[1pt,F4F4F4]{ -10h^{+2} } \hspace{0mm} {\LARGE )} \hspace{3mm} + \hspace{2mm} {\LARGE (} \hspace{0mm} \bbox[1pt,F4F4F4]{ +14h^{0} } \hspace{0mm} \bbox[1pt,F4F4F4]{ +7h^{+1} } \hspace{0mm} {\LARGE )} \bbox[1pt,F4F4F4]{ -15h^{0} } \]
\[ \hspace{10mm} +2+h \xrightarrow{ \hspace{1mm} CUBIC \hspace{1mm} } CUBIC(+2+h) = {\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +14 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -15 } \hspace{0mm} \hspace{0mm} {\LARGE ]} h^{0} + {\LARGE [} \bbox[1pt,F4F4F4]{ -48 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +7 } \hspace{0mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -24-10 } {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } +{\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \]
\[ \hspace{10mm} +2+h \xrightarrow{ \hspace{1mm} CUBIC \hspace{1mm} } CUBIC(+2+h) = {\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +14 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -15 } \hspace{0mm} \hspace{0mm} {\LARGE ]} h^{0} + {\LARGE [} \bbox[1pt,F4F4F4]{ -48 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +7 } \hspace{0mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -24-10 } {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } +{\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \] \[ \hspace{77mm} = {\LARGE [} \hspace{16mm} \bbox[1pt,F4F4F4]{ -73 } \hspace{16mm} {\LARGE ]} h^{0} +{\LARGE [} \hspace{10mm} \bbox[1pt,F4F4F4]{ -81 } \hspace{10mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{5mm} \bbox[1pt,F4F4F4]{ -34 } \hspace{5mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } + {\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \]
\[ \hspace{10mm} +2+h \xrightarrow{ \hspace{1mm} CUBIC \hspace{1mm} } CUBIC(+2+h) = {\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +14 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -15 } \hspace{0mm} \hspace{0mm} {\LARGE ]} h^{0} + {\LARGE [} \bbox[1pt,F4F4F4]{ -48 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +7 } \hspace{0mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -24-10 } {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } +{\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \] \[ \hspace{77mm} = {\LARGE [} \hspace{16mm} \bbox[1pt,F4F4F4]{ -73 } \hspace{16mm} {\LARGE ]} h^{0} +{\LARGE [} \hspace{10mm} \bbox[1pt,F4F4F4]{ -81 } \hspace{10mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{5mm} \bbox[1pt,F4F4F4]{ -34 } \hspace{5mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } + {\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \] \[ \hspace{77mm} = {\LARGE [} \hspace{16mm} \bbox[1pt,F4F4F4]{ -73 } \hspace{16mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{0} } +{\LARGE [} \hspace{10mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{10mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+1} } +{\LARGE [} \hspace{5mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{5mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } + {\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{2mm} {\LARGE ]} h^{+3} \]
\[ \hspace{10mm} +2+h \xrightarrow{ \hspace{1mm} CUBIC \hspace{1mm} } CUBIC(+2+h) = {\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -32 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +14 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -15 } \hspace{0mm} \hspace{0mm} {\LARGE ]} h^{0} + {\LARGE [} \bbox[1pt,F4F4F4]{ -48 } \hspace{0mm} \bbox[1pt,F4F4F4]{ -40 } \hspace{0mm} \bbox[1pt,F4F4F4]{ +7 } \hspace{0mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{0mm} \bbox[1pt,F4F4F4]{ -24-10 } {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } +{\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \] \[ \hspace{77mm} = {\LARGE [} \hspace{16mm} \bbox[1pt,F4F4F4]{ -73 } \hspace{16mm} {\LARGE ]} h^{0} +{\LARGE [} \hspace{10mm} \bbox[1pt,F4F4F4]{ -81 } \hspace{10mm} {\LARGE ]} h^{+1} +{\LARGE [} \hspace{5mm} \bbox[1pt,F4F4F4]{ -34 } \hspace{5mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } + {\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -4 } \hspace{2mm} {\LARGE ]} h^{+3} \] \[ \hspace{77mm} = {\LARGE [} \hspace{16mm} \bbox[1pt,F4F4F4]{ -73 } \hspace{16mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{0} } +{\LARGE [} \hspace{10mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{10mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+1} } +{\LARGE [} \hspace{5mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{5mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } + {\LARGE [} \hspace{2mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{2mm} {\LARGE ]} h^{+3} \] \[ \hspace{77mm} = {\LARGE [} \hspace{16mm} \bbox[1pt,F4F4F4]{ -73 } \hspace{16mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{0} } +{\LARGE [} \hspace{10mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{10mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+1} } +{\LARGE [} \hspace{5mm} \bbox[1pt,F4F4F4]{ -1 } \hspace{5mm} {\LARGE ]} \bbox[1pt,F4F4F4]{ h^{+2} } +{\LARGE [} \hspace{1mm} \bbox[1pt,F4F4F4]{ . . . } \hspace{1mm} {\LARGE ]} \]
Since the exponent is \(0\) and the coefficient is negative, the local graph of \(K\) near \(0\) is:
Since the exponent is \(+1\) and the coefficient is negative, the local graph of \(L\) near \(0\) is:
Since the exponent is positive even and the coefficient is negative, the local graph of \(Q\) near \(0\) is: