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1 Introduction

Using the methods of Bohr, Jessen, and Wintner [1, 2], it can be shown that the

set

A(T, σ0) = {t ∈ [T, 2T ] : −<
ζ ′

ζ
(σ + it) ≥ 0 ∀σ ≥ σ0}

has a density when σ0 > 1/2 is fixed, in the sense that

lim
T→∞

meas
A(T, σ0)

T
(1)

exists. In particular, such a density exists if we restrict ourselves to the smaller

set

A(T, σ0, σ
′) = {t ∈ [T, 2T ] : −<

ζ ′

ζ
(σ + it) ≥ 0 ∀σ ∈ (σ0, σ

′)},

for 1/2 < σ0 < 1 < σ ′.

We will choose σ ′ > 1 so that

∑

p

log p

pσ ′ = 29. (2)

This choice of sigma is selected merely to overwhelm some finite sums that will

appear later.

In this paper, we establish the following.

Theorem 1

lim
T→∞

meas A(T, σ0, σ
′)

T
� (σ0 − 1/2)2



as σ0 ↓ 1/2 and the limit on the left is approached uniformly for σ0 > 1/2 +

B log log log log T/ log log log T if B is large enough.

In order to do this, we argue that since the behaviour of −< ζ ′

ζ
(σ + it) is

essentially that of

∑

p

log p

pσ
cos(t log p),

we are just led to investigate the σ for which this sum stays positive. This study

can be further reduced to the study of the positivity of all the partial sums of

∑

p≤x

log p

p1/2
cos(t log p).

To measure the set of all t ∈ [T, 2T ] where the partial sums of this last

sum are positive, we argue that since the logarithms of the primes are linearly

independent over the rationals, finding this measure is equivalent to finding the

probability

Prob

(
∑

p≤y

log p

p1/2
Xp ≥ 0 for all y ≤ x

)
, (3)

where the Xp are independent, identically distributed random variables having

density

f(x) =
1

π
√

1 − x2
, x ∈ (−1, 1).

To justify the passage to probability theory, we use a multidimensional integral

analogue of the Erdős-Turán Inequality.
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The computation of the probability in (3) is calculated using the rudiments

of Brownian Motion Theory.

2 Reduction to Random Variables

In this section we legitimise the passage to probability theory. We estimate the

difference between the number-theoretic quantity

1

T
meas {t ∈ [T, 2T ] :

∑

p≤y

log p

pσ
cos(t log p) ≥ 0 for all y ≤ x}

and the probabilistic quantity

Prob

(
∑

p≤y

log p

pσ
Xp ≥ 0 for all y ≤ x

)
,

where the Xp are independent, identically distributed random variables having

density

f(x) =
1

π
√

1 − x2
, x ∈ (−1, 1).

There are many instances in the literature where such a passage has been neces-

sary, [2] being probably the earliest, and the references [1], [3] and [4] providing

many diverse applications of this technique. See also the work [5] for various

computations of distributions.

In what follows, the letters p and q will always denote prime numbers, π(x) =

∑
p≤x 1 and q = q(x) will denote the largest prime not exceeding x. Also, the
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vector u will have coordinates indexed by the primes, u = (u2, u3, u5, . . . , uq);

h = (log 2, log 3, . . . , log q). Observe that the vectors here live in a π(x)-

dimensional space. Furthermore, we let

c(t) = ({t log 2}, {t log 3}, . . . , {t log q}),

where {x} denotes, as usual, the fractional part of x. Finally, we denote by B

the collection of all boxes B contained in the unit torus with sides parallel to the

axes, and T = R/Z.

From Theorem 1 of [6] we deduce

Lemma 2 Let m be a positive integer. For each i, 1 ≤ i ≤ m, let Ki be a pos-

itive integer, αi, βi real numbers with αi ≤ βi ≤ αi +1. Let B = Xm
i=1[αi, βi] ⊆

Tm. Then there exist trigonometric polynomials T+
B (x), T−

B (x), such that

T±
B (x) =

∑

|ki|≤Ki

T̂±
B (k)e(k · x),

T−
B (x) ≤ χB(x) ≤ T+

B (x)

for all x ∈ Tm, and

∫

Tm

∣∣T±
B (x) − χB(x)

∣∣ dx ≤ 2

(
m∏

i=1

(
βi − αi +

1

Ki + 1

)
−

m∏

i=1

(βi − αi)

)
.
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We remark that if we write li = βi − αi and expand

m∏

i=1

(
li +

1

Ki + 1

)
−

m∏

i=1

li

in monomials in the li, then, since all the coefficients are ≥ 0, this expression

increases with the li, and it attains its maximum when all the li are 1. Thus

∫

Tm

∣∣T±
B (x) − χB(x)

∣∣ dx ≤ 2

(
m∏

i=1

(
1 +

1

Ki + 1

)
− 1

)

uniformly for all boxes B.

The following lemma is, in a sense, a continuous analogue of the Erdős -

Turán Inequality.

Lemma 3 Let T > 0. For any positive K ≥ π(x),

sup
B∈B

∣∣∣∣
1

T

∫ 2T

T

χB(c(t))dt − meas B

∣∣∣∣�
π(x)

K
+

1

T
e4Kx.

Proof. Consider a particular π(x)-dimensional box B = X
π(x)

i=1 (ai, bi), ai ≤

bi ≤ ai + 1. We take Ki = K > 0 for all i, m = π(x) in Lemma 2. Here k has

entries ki with |ki| ≤ K. In virtue of the just cited lemma,

1

T

∫ 2T

T

χB(c(t))dt − meas B ≤ 1

T

∫ 2T

T

T+
B (c(t))dt − meas B.

Using the Fourier expansion of T+
B , the above expression equals

T̂+
B (0) +

1

T

∑

k6=0

T̂+
B (k)

∫ 2T

T

e(tk · h)dt − meas B.
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The above is in turn is less than or equal to

2

π(x)∏

i=1

(bi − ai +
1

K + 1
) − 2

π(x)∏

i=1

(bi − ai) +
1

T

∑

k6=0

T̂+
B (k)

∫ 2T

T

e(tk · h)dt.

Here, we are using the standard notation e(z) = e2πiz. Since the logarithms of

the prime numbers are linearly independent over the rational numbers, k · h 6= 0

for k 6= 0. This enables us to conclude that

1

T

∫ 2T

T

χB(c(t))dt−meas B ≤ 2

π(x)∏

j=1

(1+
1

K + 1
)−2+

2

T

∑

k6=0

∣∣∣T̂+
B (k)

∣∣∣ 1

|k · h|
. (4)

Now,

∣∣∣T̂+
B (k)

∣∣∣ ≤
∣∣∣T̂+

B (k) − χ̂B(k)
∣∣∣+ |χ̂B(k)| ≤

∫

Tm

|T+
B (x) − χB(x)| dx+ |χ̂B(k)| . (5)

We observe that |χ̂B(k)| ≤ ∏π(x)

j=1 min(bj − aj,
1

|πkj|
) � 1. By the remark pre-

ceding this Lemma, the first quantity on the right-hand side of (5) is at most

2




π(x)∏

j=1

(1 +
1

K + 1
) − 1


 .

Moreover, since 1 + x ≤ ex and π(x) ≤ K, this is at most

2 (exp (π(x)/(K + 1)) − 1) � π(x)

K
.

Therefore
∣∣∣T̂+

B (k)
∣∣∣ � 1 +

π(x)

K
� 1. Upon combining this with (4) and (5), we

obtain

1

T

∫ 2T

T

χB(c(t))dt − meas B � π(x)

K
+

1

T

∑

k6=0

1

|k · h|
. (6)
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Also,

∑

k6=0

1

|k · h|
�

∑

0<m<n<
∏

p≤x pK

1

log(n/m)
.

To estimate this last sum, observe that if a > 1, then 1
log a

≤ 1 + 1
a−1

. Thus

∑

0<m<n<
∏

p≤x pK

1

log(n/m)
� e4Kx, (7)

by the Chebyshev estimates.

Combining (6) and (7) we finally arrive at

1

T

∫ 2T

T

χB(c(t))dt − meas B � π(x)

K
+

1

T
e4Kx, (8)

whence an upper bound is obtained. The lower bound is computed similarly.

Let K be a positive integer, x = (x1, x2, . . . , xm) and let B be a closed body

in [0, K]m with the property

Property (M) : if x ∈ B, then Xm
i=1[0, xi] ⊆ B.

We divide [0, K]m into Km cells Xm
i=1[ki, ki + 1] where the integers ki satisfy

0 ≤ ki < K. There are three kinds of cells C:

1. C ⊆ B; (interior)

2. C
⋂

B = ∅; (exterior)
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3. C
⋂

B 6= ∅, C 6⊆ B. (boundary)

The boundary ∂B of B is contained in the union of the cells of the third type.

Let #(B) denote the number of these boundary cells, and let fm(K) denote the

maximum of #(B) over all such bodies B. We will say that the m−1-dimensional

body Xm−1
i=1 [ki, ki + 1]X{km + 1} is the upper face of the m-dimensional box

Xm
i=1[ki, ki + 1] and that Xm−1

i=1 [ki, ki + 1]X{km} is its lower face. The following

will give us an upper bound for fm(K).

Lemma 4 Let K be a positive integer and let B a closed body in [0, K]m with

property (M). For every m ≥ 1 and every positive integer K,

fm(K) ≤ 2m(m + 1)Km−1.

Proof. The proof is by induction on m. Of the cells under consideration, we

distinguish three types:

i. Those with an upper face lying entirely outside B;

ii. Those with a lower face lying entirely within B;

iii. All those with faces that intersect B without lying in B.

For given x, i, choose integers kj for all j 6= i, 1 ≤ j ≤ m, 0 ≤ kj < K, and

consider the set

F(x) = {(x1, x2, . . . , xm) ∈ Rm : xi = x, kj ≤ xj ≤ kj + 1for all j 6= i}.
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When x is an integer, this is the face of a cell. This set moves parallel to itself

as x varies. Consider the least integer x such that F(x) is disjoint from B. Then

F(x) is the upper face of a cell of type (i). Since there are m choices for i, and

Km−1 choices for kj, we deduce that there are at most mKm−1 cells of type (i).

By similarly considering the greatest integer x such that F(x) ⊆ B, we deduce

that the number of cells of type (ii) is at most mKm−1.

Now, fix ki, and consider a slice through [0, K]m with xi = ki. Here 1 ≤ ki ≤

K, and we count at most fm−1(K) upper faces that lie partially, but not entirely,

within B. By varying i and ki, we find at most mKfm−1(K) such upper faces.

By allowing ki to run over [0, K − 1], we similarly count at most mKfm−1(K)

such lower faces. Altogether, there are at most 2mKfm−1(K) cell faces lying

partially, but not entirely, within B. Since each cell of type (iii) has 2m such

faces, it follows that there are at most Kfm−1(K) such cells. Upon assembling

these estimates, we deduce that

fm(K) ≤ 4mKm−1 + Kfm−1(K).

The result follows from the expression above and the induction hypothesis.

Let

S = {u ∈ (0, 1]π(x) :
∑

p≤y

log p

pσ
cos(2πup) ≥ 0 for all y ≤ x}.
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Let R be a positive integer and let F be the family of all π(x)-dimensional boxes

V = X
π(x)

i=1 [
ai

R
,
ai + 1

R
)

where ai ranges through all integers in [0, R − 1]. We define the in-boxes as

Si = {V ∈ F : V ⊆ S}

and the out-boxes as

So = {V ∈ F : V ∩ S 6= ∅}.

Finally, let

D =
⋃

V∈So\Si

V.

Corollary 5

measD � π2(x)/R.

Proof. Consider the body SR,

SR = {u ∈ [0, R]π(x) :
∑

p≤y

log p

pσ
cos(πup/R) ≥ 0 for all y ≤ x},

where R is a positive integer. With m = π(x), K = R, the body SR is closed

and satisfies property (M). By the preceding lemma, there are � π2(x)Rπ(x)−1

unit-volume boxes intersecting the boundary of SR. It is clear, then, that D

consists of � π(x)2Rπ(x)−1 boundary boxes, each having volume R−π(x). The
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result follows from this.

Theorem 6 Let Xp be independent, identically distributed random variables

having density

f(x) =
1

π
√

1 − x2
, x ∈ (−1, 1).

Then, for x = [(log log T)1/4] and as T → ∞,

∣∣∣∣∣
1

T
meas {t ∈ [T, 2T ] :

∑

p≤y

log p

pσ0
cos(t log p) ≥ 0 ∀y ≤ x}

− Prob

(
∑

p≤y

log p

pσ0
Xp ≥ 0 ∀y ≤ x

)∣∣∣∣∣�
1

(log log log T)2(log log T)1/6
.

Proof. We wish to demonstrate that

∣∣∣∣
1

T

∫ 2T

T

χS(c(t))dt − measS
∣∣∣∣ � 1

(log log log T)2(log log T)1/6
.

Simply observe that, as Si ⊆ S ⊆ So, we have

1

T

∫ 2T

T

χS i(c(t))dt−meas
⋃

V∈Si

V+meas
⋃

V∈Si

V−measS ≤ 1

T

∫ 2T

T

χS(c(t))dt−measS,

and

1

T

∫ 2T

T

χS(c(t))dt−measS ≤ 1

T

∫ 2T

T

χSo(c(t))dt−meas
⋃

V∈So

V+meas
⋃

V∈So

V−measS.
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Thus

∣∣∣∣
1

T

∫ 2T

T

χS(c(t))dt − measS
∣∣∣∣ ≤ max

j=i,o

∣∣∣∣∣∣
1

T

∫ 2T

T

χS j(c(t))dt − meas
⋃

V∈Sj

V

∣∣∣∣∣∣
+ 2measD

� Rπ(x) sup
B∈B

∣∣∣∣
1

T

∫ 2T

T

χB(c(t))dt − meas B

∣∣∣∣

+ measD,

where B is the collection of all boxes B contained in the unit torus with sides

parallel to the axes.

By Lemma 3 and Corollary 5 the above quantity is

� Rπ(x)

(
π(x)

K
+

e4Kx

T

)
+

π2(x)

R
.

Choosing R = [(log log T)2/3], K =
[

log T

8x

]
, and x = [(log log T)1/4], we obtain

the result.

3 A Probabilistic Lemma

We now estimate the probability that a random walk with shorter and shorter

steps remains positive.

In 1949, Sparre Andersen proved a combinatorial identity (see [7, 8, 9]) that
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enables us to compute the probability

Prob(W1 > 0,W2 > 0, . . . ,Wn−1 > 0,Wn > 0),

where Wn =
∑n

k=1 Zk is the sum of symmetric, independent, identically dis-

tributed random variables Zk. His techniques exploited the fact that the dis-

tributions of
∑m+n

k=n Zk are identical for fixed m. They do not readily gener-

alise. In 1961, G. Baxter [10] gave a proof utilising the all-sanctifying touch of

Harmonic Analysis, exploiting the fact that identical distributions have identical

characteristic functions (Fourier-Stieltjes transforms) and using the Wiener-Hopf

factorisation technique ([11] p. 402, [12] pp. 581-587).

Here, we obtain an asymptotic lower bound for this probability in the case

where the Zn are not necessarily identically distributed. Our techniques use the

fact that the random walk we are considering is a martingale. We then embed this

martingale into Brownian motion by using Strassen’s extension to Martingales of

the Skorohod representation theorem.

For our problem, we are mainly interested in the probability

Prob(
∑

1≤n≤y

cnXn ≥ 0 ∀y ≤ x) (9)

where the Xn are independent, identically distributed random variables having
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density function

f(x) =
1

π
√

1 − x2
, x ∈ (−1, 1).

Observe that the Xn have mean 0 and variance 1/2. Thus, X1 + X2 + · · · +

Xn, n = 1, 2, . . . forms a martingale. We note in passing that all the moments

of the Xn exist and, in fact, the Xn have characteristic function

1

π

∫ 1

−1

e2πixu

√
1 − x2

dx = J0(2πu),

where J0(u) =
∑∞

n=0(−1)n u2n

22n(n!)2 is the 0th Bessel function.

We borrow the following result from [13] (Theorem A.1).

Lemma 7 Skorokhod’s Representation Let {Sn =
∑n

1 Xi,Fn, n ≥ 1} be a

zero mean, square-integrable martingale. Then there exists a probability space

supporting a (standard) Brownian Motion W and a sequence of nonnegative

random variables τ1, τ2 . . . with the following properties. If Tn =
∑n

1 τi, S
′
n =

W(Tn), X ′
1 = S ′

1, X
′
n = S ′

n − S ′
n−1 for n ≥ 2, and Gn is the σ-field generated by

S ′
1, S

′
2, . . . , S

′
n and W(t) for 0 ≤ t ≤ Tn, then,

1. Sn, n ≥ 1 is distributed as S ′
n, n ≥ 1,

2. Tn is Gn-measurable,
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3. for each real number r ≥ 1,

E(τr
n|Gn−1) ≤ CrE(|X ′

n|2r|Gn−1) = CrE(|X ′
n|2r|X ′

1, . . . , X
′
n) a.s.,

where Cr = 2(8/π2)r−1Γ(r + 1), and,

4. E(τn|Gn−1) = E(X ′2
n |Gn−1) a.s.

We remark that if the random variables above are independent, the τn can

be chosen to be independent.

We also need the following corollary of the so-called Reflexion Principle (see

[14] p. 96).

Lemma 8 Define the running maximum of a Brownian Motion B(t) as

Mt = max
0≤s≤t

B(t).

Put Φ(x) = 1√
2π

∫x

−∞ exp(−u2/2)du. Then, for any positive real number a,

Prob(Mt ≤ a|B(0) = 0) = 2Φ(
a√
t
) − 1.

Theorem 9 Let Zn, n = 1, 2, . . . be symmetric, independent random variables

with Prob(Zn = 0) = 0. Set Wn =
∑

j≤n Zj. If σ2
n =

∑n

k=1 EZ2
k and if F1

denotes the cumulative distribution function of Z1, then

Prob(Wk > 0 ∀ k ≤ n) ≥
∫∞

−∞

1√
4πσ2

n

|x| exp(−x2/4σ2
n)dF1(x)−

8

π2σ4
n

n∑

k=1

EZ4
k.
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Proof. Clearly

Prob(Wk > 0 ∀k, 1 ≤ k ≤ n) = Prob(sgnZ1 = 1,Wk−Z1 ≥ − |Z1| ∀k, 2 ≤ k ≤ n).

Since neither Wk −Z1 =
∑k

j=2 Zj nor |Z1| depends on the sign of Z1, the above

equals

Prob(sgnZ1 = 1) · Prob(Wk − Z1 ≥ − |Z1| ∀k, 2 ≤ k ≤ n).

Again, since Prob(Zn ≥ a) = Prob(Zn ≤ −a), the above quantity is equal to

1

2
Prob(Wk − Z1 ≤ |Z1| ∀k, 2 ≤ k ≤ n).

By Skorokhod’s Representation, we can find a series of times T1, T2, . . . such that

{Wn − W1, n ≥ 2} is identically distributed with {B(Tn), n ≥ 1}. Thus, the

above quantity equals

1

2
Prob(B(Tk) ≤ |Z1| ∀k, 1 ≤ k ≤ n − 1).

The above quantity is at least

1

2
Prob(B(t) ≤ |Z1| ∀t ∈ [0, Tn]),

which in turn is at least

1

2
Prob(B(t) ≤ |Z1| ∀t ∈ [0, 2σ2

n]) −
1

2
Prob(Tn > 2σ2

n).
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By Lemma 8, the above is

E

(
Φ

(
|Z1|√
2σ2

n

)
−

1

2

)
−

1

2
Prob(Tn > 2σ2

n).

Since for non-negative x

Φ(x) −
1

2
=

1√
2π

∫x

0

exp(−u2/2)du ≥ x exp(−x2/2)√
2π

,

it follows that

Prob(Wk > 0 ∀ k ≤ n) ≥
∫∞

−∞

1√
4σ2

n

|x| exp(−x2/4σ2
n)dF1(x)−

1

2
Prob(Tn > 2σ2

n).

To estimate Prob(Tn > 2σ2
n), we observe that, by the One-sided Chebyshev

Inequality,

Prob(Tn > 2σ2
n) ≤ var(Tn)/σ4

n.

Since the random variables are independent, the times τ in Skorokhod’s repre-

sentation can be chosen to be independent. Thus

var(Tn) = var(
n∑

k=1

τk) ≤
n∑

k=1

Eτ2
k.

But by the inequality for the moments given in Skorokhod’s Theorem, by indepen-

dence, and since {Wn − W1, n ≥ 2} is identically distributed with {B(Tn), n ≥

1}, Eτ2
k ≤ 16

π2 EZ4
k. We thus deduce

Prob(Tn > 2σ2
n) ≤ 16

σ4
nπ2

n∑

k=1

EZ4
k,
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whence the lemma follows.

Corollary 10 Let Xp be independent random variables having density func-

tion

f(x) =
1

π
√

1 − x2
, x ∈ (−1, 1),

and let x0 > 0. Then

Prob

(
∑

x0<p≤y

log p

p1/2
Xp > 0 ∀y x0 < y ≤ x

)
� 1/ log x,

as x → ∞.

Proof. This immediately follows from the above theorem, since
∑

p≤x
log2 p

p
∼

1
2
log2 x and all moments of the Xp are uniformly bounded.

4 Proof of Theorem 1

We start by quoting the following result from [15].

Lemma 11

ζ ′

ζ
(s) = −

∑

n<x2

Λ(n)

ns
ωx(n) +

x2(1−s) − x1−s

(1 − s)2 log x

+
1

log x

∞∑

q=1

x−2q−s − x−2(2q+s)

(2q + s)2
+

1

log x

∑

ρ

xρ−s − x2(ρ−s)

(ρ − s)2
,

where ωx(n) = 1 (1 ≤ n ≤ x),
log(x2/n)

log x
, (x ≤ n ≤ x2).
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We shall need the following zero-density result (see [15]).

Lemma 12 Let N(σ, T) denote the number of zeroes β + iγ of ζ(σ + it) with

β ≥ σ, |γ| ≤ T . Then, for 1/2 ≤ σ ≤ 1,

N(σ, T) � T 1−(σ−1/2)/4 log T.

Lemma 13 If x0 =
√

log log x,

Prob

(
∑

x0<p≤x

log p

pσ
Xp ≥ 0 for all σ > 1/2

)
� 1/ log x.

Proof. By Riemann-Stieltjes integration

∑

p≤x

log p

pσ
Xp =

∫x

1−

u1/2−σ d

(
∑

p≤u

log p

p1/2
Xp

)

= x1/2−σ
∑

p≤x

log p

p1/2
Xp + (σ − 1/2)

∫x

1

u−1/2−σ
∑

p≤u

log p

p1/2
Xp du.

The result now follows upon appealing to Corollary 10.

Lemma 14

Prob

(
∑

p>x0

log p

pσ
Xp ≥ 0 for all σ > σ0

)
� σ0 − 1/2

− log(σ0 − 1/2)
.

as σ0 ↓ 1/2, σ0 ≥ 1/2 + (A log log x)/ log x for some positive constant A.

Proof. Write

∑

p>x0

log p

pσ
Xp =

∑

x0<p≤x

log p

pσ
Xp +

∞∑

r=1

∑

2r−1x<p≤2rx

log p

pσ
Xp. (10)
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For some large and positive constant c1, we have, via Kolmogorov’s Inequality,

Prob


 max

2r−1x<y≤2rx

∣∣∣∣∣∣

∑

2r−1x<p≤y

Xp

∣∣∣∣∣∣
≤ c1r

2
√

2rx


 ≥ 1 −

c2

r5
. (11)

Therefore, via independence,

Prob


 max

2r−1x<y≤2rx

∣∣∣∣∣∣

∑

2r−1x<p≤y

Xp

∣∣∣∣∣∣
≤ c1r

2
√

2rx for all r = 1, 2, . . .


 ≥

∞∏

r=1

(1−
c2

r5
).

(12)

The infinite product on the right-hand side of (12) is some positive constant c3,

thanks to the convergence of
∑∞

r=1
1
r5 .

If the event in (11) does hold, then

∑

2r−1x<p≤2rx

log p

pσ
Xp � r2

√
2rx((log 2rx)/(2rx)σ), (13)

upon summing by parts. Summing over all r ≥ 1,

∞∑

r=1

r2
√

2rx ((log 2rx)/(2rx)σ) � x1/2−σ
(
(σ − 1/2)−4 + (σ − 1/2)−3 log x

)
,

for σ > 1/2 sufficiently close to 1/2. Thus

∞∑

r=1

∑

2r−1x<p≤2rx

log p

pσ
Xp � x1/2−σ

(
(σ − 1/2)−4 + (σ − 1/2)−3 log x

)
, (14)

provided the event on (12) holds. Calling the quantity on the right-hand side

of (14) A(x, σ), we see that A(x, σ0) � (log x)/(log log x)3 uniformly for σ0 ≥

1/2 + A log log x/ log x for large enough A. Now, since
∑

x0<p≤x log2 p/p2σ ∼
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1
2
log2 x as σ ↓ 1/2, x → ∞, by the Central Limit Theorem and the Berry-Esseen

Inequality,

Prob

(∣∣∣∣∣
∑

x0<p≤x

log p

pσ
Xp

∣∣∣∣∣ ≤ c4A(x, σ0)

)
�

∫ c4/ log x(log log x)3

−c4/ log x(log log x)3

e−u2/2du, (15)

which is in turn

� 1

log x(log log x)3
.

for a positive constant c4 chosen appropriately. The first quantity on the right-

hand side of (10) will be positive for all σ > σ0 with probability � σ0−1/2

− log(σ0−1/2)

in view of Lemma 13. Combining this with (15), we obtain the result.

We are now in position to prove our main result.

Proof of Theorem 1. By Lemma 11, if s = σ + it,

−<
ζ ′

ζ
(s) =

∑

p≤x2

log p

pσ
wx(p) cos(t log p) +

∑

p2≤x2

log p

p2σ
wx(p

2) cos(t log p2)

+
1

log x
<

∞∑

q=1

x−2q−s − x−2(2q+s)

(2q + s)2

− <
x2(1−s) − x1−s

(1 − s)2 log x
+

∞∑

n=3

∑

pn≤x2

log p

pnσ
wx(p

n) cos(t log pn)−

− <
1

log x

∑

ρ

xρ−s − x2(ρ−s)

(ρ − s)2
. (16)

Our strategy is the following. We decompose
∑

p≤x2
log p

pσ wx(p) cos(t log p)
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as

∑

p≤x0

log p

pσ
wx(p) cos(t log p) +

∑

x0<p≤x2

log p

pσ
wx(p) cos(t log p). (17)

We force the first term above to be positive, at the expense of some small

probability, and we use this term to overwhelm the effect of every other term in

the sum (16). We then calculate the measure of the set of t ∈ [T, 2T ] such that

the second term on the right-hand side above be positive for all σ > σ0.

To determine the proportion of t ∈ [T, 2T ] such that the quantity

∑

p≤x2

log p

pσ
wx(p) cos(t log p) +

∑

p2≤x2

log p

p2σ
wx(p

2) cos(t log p2)

be positive for σ > σ0, it is enough to determine the probability that

∑

p≤x2

log p

pσ
wx(p)Xp +

∑

p2≤x2

log p

p2σ
wx(p

2)(2X2
p − 1)

be positive for σ > σ0. Since the weights ωx(n) are decreasing, it is enough to

compute the probability that

∑

x0<p≤x2

log p

pσ
Xp

be positive for σ > σ0.

We note that Prob(Xp > 3/4 for all p ≤ x0) = (
∫1

3/4
(1−x2)−1/2 dx)π(x0) �

(σ0 − 1/2)1/2 if σ > σ0 ≥ 1/2 + A log log x/ log x, x0 = (log log x)1/2. Thus

∑

p≤x0

log p

pσ
wx(p)Xp � x1−σ0

0 /(1 − σ0) � (log log x)1/5.
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If σ > 3/4, then
∑

p2≤x2
log p

p2σ wx(p
2)(2X2

p − 1) � 1. Consider the event

∣∣∣∣∣∣

∑

p2≤x2

log p

p2σ
wx(p

2)(2X2
p − 1)

∣∣∣∣∣∣
> (log log x)1/5,

for some σ ∈ [1/2, 3/4]. Let σk = 1/2+ k

log2 x
, 0 ≤ k ≤ 3 log2 x

4
. Then, the event

described above is contained in the event

⋃

k

∣∣∣∣∣∣

∑

p2≤x2

log p

p2σk
wx(p

2)(2X2
p − 1)

∣∣∣∣∣∣
> (log log x)1/6,

by the Mean Value Theorem. Choose y as large as possible so that
∑

p≤y
log p

p
≤

1
2
(log log x)1/6. Then the preceding union of events is contained in

⋃

k

(∣∣∣∣∣
∑

y≤p≤x

log p

p2σk
wx(p

2)(2X2
p − 1)

∣∣∣∣∣

)
> (log log x)1/6.

Thus, for a fixed k,

Prob

(∣∣∣∣∣
∑

y≤p≤x

log p

p2σk
wx(p

2)(2X2
p − 1)

∣∣∣∣∣ > (log log x)1/6

)
≤ exp

(
−a3(log log x)1/3

∑
p≤y

log p

p

)
.

But by our choice of y, this is

≤ exp

(
−a3y(log log x)1/3

log y

)
≤ exp

(
− exp

(
a4(log log x)1/6

))
� 1

log10 x
.

Summing over k,

Prob

(
⋃

k

∣∣∣∣∣
∑

y≤p≤x

log p

p2σk
wx(p

2)(2X2
p − 1)

∣∣∣∣∣ > (log log x)1/6

)
� 1

log8 x
.
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Thus ∣∣∣∣∣∣

∑

p2≤x2

log p

p2σ
wx(p

2)(2X2
p − 1)

∣∣∣∣∣∣
≤ 1

2

∑

p≤x0

log p

pσ
wx(p)Xp,

except for a set of measure � 1

log8 x
. We then deduce that the probability that

∑

p≤x2

log p

pσ
wx(p)Xp +

∑

p2≤x2

log p

p2σ
wx(p

2)(2X2
p − 1)

be positive for all σ > σ0 is � (σ0 − 1/2)2 in view of the preceding Lemma.

We observe that since p7/5 < p3/2 − p1/2 for p > 5,

∑

p

log p

p3/2 − p1/2
<

∑

p≤5

log p

p3/2 − p1/2
+

∞∑

n=7

log n

n7/5

<
∑

p≤5

log p

p3/2 − p1/2
+

∫∞

1

u−7/5 log udu

< 1 +
25

4
Γ(2) = 7.25.

We choose σ ′ so that

∑

p

log p

pσ ′ = 29.

We set x = (log log T)1/4 and let A be the positive constant from Lemma 14.

To all zeroes ρ in the rectangle

1/2 + A log log log log T/ log log log T ≤ σ ≤ σ ′, T ≤ t ≤ 2T,

make a circle centred at the zero with radius log2 T, and then delete these circles

from the rectangle. Also, make a circle of radius of log T around s = 1 and

delete it.
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We now show that, independent of
∑

x0<p≤x2
log p

pσ Xp being positive for all

σ > σ0, the absolute values of the last four terms in (17) are no larger than

∑
p≤x0

log p

pσ Xp for all σ > σ0, on a set of positive measure.

First observe that

∑

|t−γ|≥log2 T

1

(t − γ)2
≤

∑

n≥log2 T

1

n2

∑

n≤|t−γ|<n+1

1.

This last sum is

O


 ∑

n≥log2 T

log(t + n + 1)

n2


 ,

which is in turn

O

(∫∞

(log2 T)/2

log T + log u

u2
du

)
= O

(
1

(log T)1/2

)
.

Therefore, outside the neighbourhoods of the zeroes,

∣∣∣∣∣
1

log x

∑

ρ

xρ−s − x2(ρ−s)

(ρ − s)2

∣∣∣∣∣�
x1/2−A log log log log T/(log log log T)

log x

∑

|t−γ|≥log2 T

1

(t − γ)2

For T sufficiently large, this can be made

<
1

6

∑

p≤x0

log p

pσ
.

This will hold true for all σ ∈ [σ0, σ ′), except for a set of t ∈ [T, 2T ] of

proportion T−A log log log log T/4(log log log T)(log T)3 in view of Lemma 12.
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To treat
∑∞

n=3

∑
pn≤x2

log p

pnσ wx(p
n) cos(t log pn), we note that

∣∣∣∣∣∣

∞∑

n=3

∑

pn≤x2

log p

pnσ
wx(p

n) cos(t log pn)

∣∣∣∣∣∣
<

∑

p

log p

p3/2 − p1/2

<
1

2

∑

p≤x0

log p

pσ
,

on a set of positive measure, for all σ ∈ (σ0, σ
′].

To treat 1
log x

<
∑∞

q=1
x−2q−s−x−2(2q+s)

(2q+s)2 we observe that since σ > 1/2 the

series converges absolutely, and being multiplied by 1/ log x, we will have even-

tually

1

log x

∣∣∣∣∣<
∞∑

q=1

x−2q−s − x−2(2q+s)

(2q + s)2

∣∣∣∣∣ <
1

6

∑

p≤x0

log p

pσ
,

for all σ ∈ (σ0, σ
′] on a set of positive measure.

Finally, if T is chosen large enough,
∣∣∣x2(1−s)−x1−s

(1−s)2 log x

∣∣∣ < 1
6

∑
p≤x0

log p

pσ for all

σ ∈ (σ0, σ
′], except for a set of measure (log T)/T .

Upon gathering all of the above, we achieve the result.
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