
TO CALCULATE IN CALCULUS

A. SCHREMMER

That calculations make mathematics “more accessible” has long been recognized, at
least since Descartes and certainly by Newton and Leibniz. Yet, limits have now become,
even though they cannot be calculated—looking for a Skolem function δ = S(ε) hardly
qualifies, the rock on which the calculus rests . . . and beginners founder.1

Prefatory Remarks

When thinking about how to circumvent limits, one runs invariably into f(x) = x2 sin 1
x

where the problem is that the derivative is not continuous at 0 and the first approach
that comes to mind is to restrict calculations to a given class of functions as, for instance,
Class P (t, n) functions in Levi [8] or real analytic functions in Bassein [1]. But how can
we plausibly introduce a class of allowable functions up-front?

On the other hand, the heart of the matter may be the way we think about x0 and x0+h
as, for all practical purposes, only x0 + h is “real”: try to cut a board of length x0 and
what you will get is a board of length x0 +h. In [2], Dieudonné writes that “a real number
[x0] is known only when a method to approximate it [to x0 + h] has been given (with an
approximation which the mathematician wants to be arbitrarily small, whereas the user of
mathematics is content with much less)” while, in [4], Gowers never even mentions real
numbers while spending a whole chapter on infinite decimals. This is also the distinction
Leibniz made possible and Robinson legal. But, if infinitesimals do allow for calculations,
they seem difficult to introduce “intuitively” other than the way Leibniz did it.2 See for
instance Keisler [5], Robert [10], and even Freed [3], none of which could be transparent
enough to gain broad acceptance.

Nevertheless, instead of looking at the differential calculus as being “the mathematics of
change”, the view taken here will be, to quote Dieudonné again, that “[in analysis] we often
have to study the “behaviour” of a function f in a neighborhood of x0”, i.e. f(x0 + h).3

We start from the fact that an engineer who wanted to compute 17
7 +

√
10 + π would

use formal series
∑∞

0 an( 1
10)n truncated to some approximation and write something like

Date: March 27, 2015.
1Even if introducing limits “intuitively” gets around Skolem functions, that still does not make them

calculatable.
2An interesting parallel is with the Dirac and Heaviside “functions” with which physicists never had any

problem and for whom the fact that Schwartz made them acceptable to mathematicians made no difference.
3So, for f(x) = x2 sin 1

x
, one could say that it is defining f(0) that causes all the trouble.
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17
7 +
√

10 + π = 2.42857 + [...] + 3.16227 + [...] + 3.14159 + [...] = 8.73243 + [...] with [...]

standing for the small difference between a real number and its decimal approximation.4

Similarly, given a function, Lagrange [6], who explicitly wanted to free the differential
calculus from “any consideration of infinitesimals, vanishing quantities, limits and fluxions
and reduce it to the algebraic study of finite quantities”, used formal series

∑∞
0 An(x0)h

n

truncated to local best polynomial approximations of f(x0 + h) from which all the usual
notions can be defined and, once limits have been confined within o[hn], all the usual the-
orems can be proven by calculations. That, unlike

∑∞
0 an( 1

10)n,
∑∞

0 An(x0)h
n does not

necessarily converge is completely irrelevant: Lagrange was using asymptotic expan-
sions and, to quote Dieudonné again, “one should be careful to realize that the notion of
asymptotic expansion has nothing to do with the notion of a series.” (Emphasis in the
original.)

More precisely, using asymptotic expansions “is to compare f to [gauge] functions whose
behaviour near 0 [or ∞] is considered known,” that is functions that i. approach 0 or ∞
as x approaches 0 or ∞ and ii. are closed for multiplication so that iii. they are totally
ordered by the relation “f is equal to, or negligible compared to, g”. See the appendix.
Thus, “calculating means approximating” and “one must learn to distinguish what is “large”
from what is “small”, what is “preponderant” and what is “negligible”.”

The implementation suggested here should be acceptable to aspiring engineers, the ma-
jority of the students in Calculus. We describe how much of the behavior of an elementary
function can be calculated and then discuss in that context some of the usual theorems.

Polynomial Functions

We use the positive power functions ax+n as gauges and the fact that, near 0, hm = o[hn]
for m > n and, near ∞, xm = o[xn] for m < n. With the binomial theorem as addition
formula, we then get f(x0 + h) =

∑∞
0 Ai(x0)h

i and just separate a principal part∑n
0 Ai(x0)h

i, simple enough to give us the local information we seek, from a remainder
o[hn] too small to be significant in that regard. Usually, n ≤ 2.

Best Approximations. If we try to approximate f(x0 + h) =
∑∞

0 Ai(x0)h
i with a

constant function, the simplest kind of non-zero function, the error for k(x) = K is
f(x0 + h) − k(x0 + h) = [A0(x0) − K] + o[1] and therefore of the same order of mag-
nitude as the approximate output. But if we take K = A0(x0), the error is then A1h+o[h],
that is smaller than the approximate output by an order of magnitude. Thus, the Best
Constant Approximation of f near x0 is BCAf(x0 + h) = A0(x0). Similarly, the Best
Affine Approximation is BAAf(x0 + h) = A0(x0) +A1(x0)h and the Best Quadratic
Approximation is BQAf(x0 + h) = A0(x0) +A1(x0)h+A2(x0)h

2.

Geometry. We look at the way f(x0 + h) differs qualitatively on each side of x0 from
simpler, already known functions. Since the zero function has no height, we define Height-
sign f near x0 as the way, up or down, f(x0 + h) differs on each side of x0 from the zero
function. Similarly, since constant functions have no slope, Slope-sign f near x0 is the

4As engineers are wont to put it, “The real real numbers are the decimal numbers”.
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way f(x0 + h) differs from BCAf(x0 + h) and since affine functions have no concavity,
Concavity-sign f near x0 is the way f(x0 + h) differs from BAAf(x0 + h).

When x0 is regular, whether f is positive or negative (resp. increasing or de-
creasing, concave up or concave down) at x0, i.e. whether Heigh-sign f near x0 =
〈+,+〉 or 〈−,−〉 (resp. Slope-sign f near x0 = 〈�,�〉 or 〈�,�〉, Concavity-sign f near
x0 = 〈∪,∪〉 or 〈∩,∩〉), is thus determined by the sign of the coefficient of h0 (resp. h1,
h2) in f(x0 + h). When x0 is critical, i.e. when the relevant coefficient is 0, the in-
formation comes from the sign of the next non-zero coefficient. x0 is a height sign-
change (resp. slope sign-change, concavity sign-change) input iff Heigh-sign f near
x0 = 〈+,−〉 or 〈−,+〉 (resp. Slope-sign f near x0 = 〈�,�〉 or 〈�,�〉, Concavity-sign f
near x0 = 〈∪,∩〉 or 〈∩,∪〉).
Example 1. Let f(x) = (x − 2)3 + x − 1. We get from f(+2 + h) = +1 + o[1] that
Height-sign f near +2 = (+,+), from f(+2 + h) = +1 + h + o[h] that Slope-sign f near
+2 = 〈�,�〉 but we need f(+2 + h) = +1 + h + h3 + o[h3] to get that Concavity-sign f
near +2 = 〈∩,∪〉 and therefore that +2 is a concavity sign-change input.

We can also characterize notable inputs. For instance, x0 is a local extremum iff
the first non-constant term of f(x0 + h) is even and x0 is an inflection iff the first non-
linear term of f(x0 + h) is odd. Thus, for polynomial functions, Slope-sign f near a local
extremum = 〈�,�〉 or 〈�,�〉 and Concavity-sign f near an inflection = 〈∪,∩〉 or 〈∩,∪〉.
A 0-height (resp. 0-slope, 0-concavity) input is an input whose nearby inputs have
small height (resp. slope, concavity).5 So, to locate 0-height (resp. 0-slope, 0-concavity)
inputs, we try to solve A0(x0) = 0 (resp. A1(x0) = 0, A2(x0) = 0).

A local graph is the graph of a Best Graphic Approximation i.e. an approximation
that has height, slope and concavity if any. Smoothly interpolating the local graph near∞
gives an essential global graph which predicts the existence of essential notable inputs,
i.e. those “visible from infinity”, but not that of fluctuations i.e. pairs of opposite extrema
separated by an inflection. In other words, polynomial functions are “essentially” positive
power functions with a number of fluctuations thrown in.

Example 2. Let Q(x) = ax2 + bx + c. Near ∞, Q(x) = ax2 + o[x2] and interpolating
the local graph near ∞ predicts the existence of a 0-slope extremum. From Q(x0 + h) =
[ax20 + bx0 + c] + [2ax0 + b]h + [a]h2, we get that near −b2a , the solution of 2ax0 + b = 0,

what slope there is comes from ah2. So, −b2a is the predicted extremum and the existence

of 0-height inputs depends on whether Height-sign Q near −b2a is the opposite or the same
as Height-sign Q near ∞. (Figure 1.)

Example 3. Let C(x) = ax3 + bx2 + cx + d. Near ∞, C(x) = ax3 + o[x3] and interpo-
lating the local graph near ∞ predicts the existence of an inflection. From C(x0 + h) =[
ax30 + bx20 + cx0 + d

]
+
[
3ax20 + 2bx+ c

]
h+ [3ax0 + b]h2 + ah3, we get that near −b3a , the

solution of [3ax0 + b] = 0, what concavity there is comes from ah3. So, −b3a is the predicted

5While nature abhors, say, 0◦ Kelvin or 0 Pascal, it has no issue with h◦ Kelvin or h Pascals, however
small h is. And when physicists try to solve f(x) = 0, it is in the hope of locating those inputs near which
f(x) is small—not to say infinitesimal.
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Figure 1. Q(x) = ax2 + bx+ c
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Figure 2. C(x) = ax3 + bx2 + cx+ d

inflection and the existence of a fluctuation depends on whether Slope-sign C near −b3a is
the opposite or the same as Slope-sign C near ∞. (Figure 2.)

Locally Approximately Polynomial Functions

Constant (resp. affine, quadratic) functions have globally constant height (resp. slope,
concavity) but what of functions that are only locally approximately constant (resp. locally
approximately affine, locally approximately quadratic)? For instance, for q(x) = ax2+bx+c,
q(x0 + h) = A0(x0) + A1(x0)h + ah2 which shows that quadratic functions have constant
concavity. But what of functions such that f(x0+h) = A0(x0)+A1(x0)h+A2(x0)h

2+o[h2]?
This is precisely where the difficulties begin. To avoid ambiguities, let us say that f is

n-Peano-differentiable at x0 iff f has a Best Polynomial Approximation of degree
n. Then, for example, we obviously have

Theorem. If f is Peano-continuous (resp. Peano-differentiable, Peano-2-differentiable) at
x0, then near x0, f(x) is positive/negative (resp. increasing/decreasing, concave up/concave
down) if A0 (resp. A1, A2) is positive/negative.

But what happens when A0 (resp. A1, A2) is 0?

Example 4. The fact that the coefficient of h2 in Example 1 was 0 did not pre-
vent us from getting the concavity because we then used the h3 term. But, for g(x) =
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x3 sin 1
x when x 6= 0, 0 otherwise, that g(0+h) = 0+0h+0h2 +o[h2] is a dead end because

the concavity is in o[h2] and, as can happen with asymptotic expansions, here we cannot
get an h3 term. (But then, f ′′(0) doesn’t exist either.)

More generally, we may ask what the connection is between Akk! and the Cauchy-
derivative f (k)(x0):

• If f (k)(x0) exists for k = 0, . . . , n, then the Taylor polynomial
∑k=n

k=0 f
(k)(x0)h

k is
the Best Polynomial Approximation of degree n.
• But, as the function g in Example 4 shows, the existence of a Best Polynomial

Approximation of degree k > 1 near x0 does not ensure the existence of any Cauchy-
derivative of order > 1 at x0.

Peano-continuity and Peano-differentiability at x0 are local properties and one would
like to study them on an interval. For instance, the following would seem to be rather
desirable:

Theorem. A continuous function on a closed bounded interval is bounded.

But if the proof is not obvious with Cauchy-continuity, Peano-continuity does not make
it any easier. However, the latter isolates the difficulty very clearly. Say f is Peano-
continuous on an interval [a, b], then ∀x0 ∈ [a, b], f(x0 + h) = f(x0) + o(1). Suppose h is
in a neighborhood of 0 whose size depends on x0, for example such that o(1) < 1

10 . If we
knew that we could cover [a, b] using, say, N of these intervals, then f(x)− f(a) would be
bounded by N

10 and the theorem proved. This raises the question as to whether, from an
open covering of a closed bounded interval, we can extract a finite one.

Rational Functions

To deal with rational functions, we include negative power functions among the gauges
because there now may be: i. poles, namely ∞-height inputs, i.e. inputs whose nearby
inputs have large height, and/or ii. an asymptote near ∞. We also need the fact that,
near 0, h−m = o[h−n] for m < n and, near ∞, x−m = o[x−n] for m > n.

Local Behavior. Let f(x) = A(x)
B(x) =

amxm+ ...+apxp

anxn+ ...+aqxq
, m ≥ p, n ≥ q. Near ∞, from

f(x) =
amxm+ ...+apxp

anxn+ ...+aqxq
the next step is obvious: to get a best polynomial approximation

we must divide in descending powers until we get the local information we seek. Near x0,

we compute f(x0 + h) = A(x0+h)
B(x0+h)

= A0+A1h+A2h2+o[h2]
B0+B1h+B2h2+o[h2]

as before and the next step is again

obvious: to get a best polynomial approximation we must divide in ascending powers. If
x0 is a pole, we get a negative power function which is a Best Graphic Approximation.

Essential global graph. We interpolate the local graphs near ∞ and near the ∞-height
input(s)—if any. Odd poles can be seen as infinite fluctuations and even poles as infinite
extrema. In other words, rational functions are “essentially” integral power functions with
bounded/infinite fluctuations and/or bounded/infinite extrema thrown in.

Example 5. Let f(x) = x2+x+1
(x−2)2 . i. Near ∞, we get by long division in descending

powers that f(x) = +1 + 5x−2 + o[x−2], i.e. a horizontal asymptote. ii. Near +2, the only
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Figure 3. f(x) = x2+x+1
(x−2)2
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Figure 4. f(x) = x3−8
x2−5x+6

possible pole, we get by short division that f(+2 + h) = +7+o[1]
h2

= +7h−2 + o[h−2], i.e.
that +2 is indeed a pole. iii. A smooth interpolation of the local graphs near ∞ and +2
gives the essential global graph in Figure 3 which shows that f has at least one inflection
and one minimum.

Example 6. Let f(x) = x3−8
x2−5x+6

. i. Near∞, we get by long division in descending powers

that f(x) = x + 5 + 19x−1 + o[x−1] i.e. an oblique asymptote. ii. Near +2, one of two

possible poles, we get by long division in ascending powers that f(+2+h) = +12h+6h2+h3

−h+h2 =

−12 − 18h − 19h2 + o[h2] i.e. that +2 is regular. iii. Near +3, the other possible pole,

we get by short division that f(+3 + h) = +19+27h+9h2+h3

h+h2
= +19+o[1]

h+o[h] = +19h−1 + o[h−1]

i.e. that +3 is indeed a pole. iv. A smooth interpolation of the local graphs near ∞ and
+3—the local graph near +2 provides only confirmation—gives the essential global graph
in Figure 4 which shows that f has at least one maximum and one minimum.

Radical Functions

Rather that defining radical functions as functions which output irrational numbers, we
look at them as solutions of functional equations so that the approximating issue is built-in.
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Figure 5. f(x) =
√
x+ex

x2−1

Example 7. Let
√

be a solution of f2(x) = x. From
√
x0 + h = A0(x0) + A1(x0)h +

A2(x0)h
2 + o[h2] and therefore

(√
x0 + h

)2
= A0(x0)

2 + 2A0(x0)A1(x0)h+
[
A1(x0)

2+

2A0(x0)A2(x0)
]
h2+o[h2], we get for x0 > 0 that

√
x0 + h =

√
x0+ 1

2
√
x0
h− 1

8x0
√
x0
h2+o[h2].

Transcendental Functions

Similarly, we look at the exponential, logarithmic and circular functions as solution of
initial value problems as, for instance, in Lang [7][pp. 65-76]. However, for much of what
is needed with beginners, the following is sufficient:

i. Let exp be the solution of f ′ = f with f(0) = 1. From exp(x0 + h) = A0(x0) +
A1(x0)h+A2(x0)h

2 +A3(x0)h
3 + o[h3] and therefore exp′(x0 + h) = A1(x0) + 2A2(x0)h+

3A3(x0)h
2 + o[h2], we get exp(x0 + h) = exp(x0)

[
1 + h+ h2

2 + h3

3!

]
+ o[h3] and, since

exp(0) = 1, exp(h) = 1 + h + h2

2 + h3

3! + o[h3]. Hence the approximate addition formula
exp(x0 + h) = exp(x0) · exp (h) + o[hn]. Near ∞, xn = o[ex], e−x = o[x−n]

ii. Near 0+, h−n = o[log h] all n and near +∞, log x = o[xn] all n.
iii. Let sin and cos be the solutions of f ′′ = −f with sin(0) = 0, sin′(0) = 1 and cos(0) =

1, cos′(0) = 0. From sin(x0 + h) = A0(x0) + A1(x0)h + A2(x0)h
2 + A3(x0)h

3 + o[h3] and
therefore sin′′(x0+h) = 2A2(x0)+3!A3(x0)h+o[h] we get sin(x0+h) = A0(x0)+A1(x0)h−
1
2A0(x0)h

2− 1
3!A1(x0)h

3 +o[h3]. Since sin(0) = 0 and sin′(0) = 1, sin(h) = h− 1
3!h

3 +o[h3].

Similarly, cos(h) = 1− 1
2h

2 +o[h2]. Hence the approximate addition formulas sin(x0 +h) =
sinx0 cosh+ cosx0 sinh+ o[hn] and cos(x0 + h) = cosx0 cosh− sinx0 sinh+ o[hn].

We can then investigate a rather wide range of functions.

Example 8. Let f(x) =
√
x+ex

x2−1 . i. Near +∞, we have f(x) = ex+[...]
x2+[...]

= ex + o[???].

ii. Near 0+, we have f(h) =
h

1
2+(1+h+h2

2
+[...])

−1+h2 = −1 − h
1
2 + o[h

1
2 ]. iii. Near +1, the only

possible pole, we have f(+1 + h) =
√
1+h+e1+h

(1+h)2−1 =
1+h

2
+[...]+e(1+h+[...])

1+2h+[...]−1 = e+1
2 h−1 + o[???].

iv. A smooth interpolation of the local graphs near 0, +1 and +∞ gives the essential global
graph in Figure 5 which in turn shows that f has at least one minimum and one inflection.
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Derivative Rules

To find the derivative of [f ?g] where ? is one of the algebraic operations, we need only get

the coefficient of h in [f ?g](x0 +h). For instance, to find the derivative of f(x) = N(x)
D(x) , we

compute f(x0 +h) = N(x0+h)
D(x0+h)

= N0(x0)+N1(x0)h+o[h]
D0(x0)+D1(x0)h+o[h]

= N0(x0)
D0(x0)

+ N1(x0)D0(x0)−N0(x0)D1(x0)
D(x0)2

h+

o[h] by long division in ascending powers of h.
However, rather than to invoke the rules, it is often easier and faster to compute directly.

Example 9. To find the equation of the tangent to f(x) = x2−1
x−2 at x0 = 3, we compute

BAAf(3 + h) = (3+h)2−1
3+h−2 = 8+6h+h2

1+h = 8− 2h by division in ascending powers, from which

y = 8− 2(x− 3).
As might be expected, the chain rule is a bit more subtle:

– Since f is differentiable, f(x0 + h) = f(x0) + f ′(x0)h + o[h] = f(x0) + k where k =
f ′(x0)h+ o[h] so that o[k] = o[f ′(x0)h+ o[h]] = f ′(x0)o[h] + o[o[h]] = o[h] + o[o[h]] = o[h].
– Since g is differentiable,

g(f(x0) + k) = g(f(x0)) + g′(f(x0))k + o[k]

= g(f(x0)) + g′(f(x0)){f ′(x0)h+ o[h]}+ o[h]

= g(f(x0)) + g′(f(x0))f
′(x0)h+ g′(f(x0))o[h] + o[h]

= g(f(x0)) + g′(f(x0))f
′(x0)h+ o[h]

Limits

In the conventional approach, we define

lim
x→x0

f(x) = L iff ∀ε∃δ p0 < |x− x0| < δ ⇒ |f(x)− f(x0)| < εq

but once we decide, as in the “intuitive” approach, to avoid ε’s and δ’s, we are left with

lim
x→x0

f(x) = L iff

i.e. without even the appearance of a definition. By contrast, here we have

lim
x→x0

f(x) = lim
h→0

f(x0 + h) = lim
h→0

[L+R0(h) = L+ lim
h→0

R0(h)

so that

lim
x→x0

f(x) = L iff f(x0 + h) = L+ o[h0]

In fact, we can just as easily find sided limits by looking at the First Non-Constant
Approximation f(x0 + h) = L+Anh

n + o[hn].
Moreover, here we obviously need neither the Derivative Tests nor L’Hôpital’s Rule.

Example 10. limx→0
sinx
x , limx→0

ex−1
x3

, limx→0
1−cosx
x2

, limx→0
ex

x2
, limx→0

tanx
x2

, are all
obvious as soon as we replace the functions by polynomial approximations.
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Remarks On Some Theorems

Mean Value Theorem. In this context, the Mean Value Theorem is seen as a remainder
theorem, that is as providing bounds on the error made when we approximate f(x0 + h)

by f(x0) by saying that, when f is differentiable, the remainder R(0)(h) in f(x0 + h) =

f(x0) + R(0)(h) is of the form h · f ′(c) with c between x0 and x0 + h. This is of course a
special case of Taylor’s formula with remainder, also called Extended Mean Value Theorem
and due, significantly, to Lagrange:

f(x0 + h) = f(x0) + f ′(x0)h+ · · ·+ f (n)(x0)

n!
· hn +R(n)(h)

in which R(n)(h) = f (n+1)(c)
(n+1)! h

n+1 with c between x0 and x0 + h. It gives as an easy

consequence that if f ′(x) = 0 on (a, b) and if f(x) is continuous on [a, b] then f(x) is
constant, and that if f ′(x) > 0 then f(x) is increasing.

We should stress that, in this context,
∑k=n

k=0 f
(k)(x0)

hk

k! is not to be thought of as the

nth partial sum of a Taylor series. When writing

f(x) =

k=n∑
k=0

f (k)(x0)
hk

k!
+ hnRn(x0, h)

the remainder, hnRn(x0, h), for x0 fixed, is a function of two variables, h and n, so that,
in order to try to make it small, we can do either one of two things:

• For fixed n, we can make |h| small (this is our viewpoint). For example, by inte-
gration by parts, we have:∫ ∞

0

e−t

1 + xt
dt =

n∑
0

(−1)kk!xk + (−x)n+1

∫ ∞
0

e−t · tn+1

1 + xt
dt

If x = 0, the last term is, in absolute value, less than or equal to (n + 1)!|x|n+1

and even though the absolute value of the remainder approaches ∞ as n→∞, for
fixed n, it can be made as small as we wish by choosing x close enough to 0.
• For fixed x, we can try to make Rn small by letting n approach ∞ which leads to

analytic functions theory. The theory is not local anymore as we are approximating
f in a fixed neighborhood of x0.

Inverse Function Theorem. If f ′(x0) 6= 0 and if f ′ is continuous at x0, then f has
an inverse, defined in a neighborhood of f(x0) and which is continuously differentiable:
(f−1(f(x))′

∣∣
x=x0

= 1
f ′(x0)

In other words, letting ξ = f1(x), there exists a change of variable ξ, which is continu-
ously differentiable so that f(ξ(x)) = x and, locally, the graph of f can be rectified—but
the rectification can be quite cumbersome, e.g. for f(x) = x+ x3 sin 1

x , x 6= 0, f(0) = 0.

To show that f ′ is differentiable, we check that f−1(f(x0) + k) is approximately affine.

We have f(x0) + k = f(x0 + h) = f(x0) + f ′(x0)h + o[h] with h = k
f ′(x0)

+ o[h]
f ′(x0)

. Then,



10 A. SCHREMMER

f−1(f(x0) + k) = x0 + h = f−1(f(x0)) + 1
f ′(x0)

k − 1
f ′(x0)

· o[h] in which the remainder

− 1
f ′(x0)

· o[h] is plausibly small.

For a proof, the remainder must be shown to be ok[k]. From k = h(f ′(x0)), h → 0
implies k → 0 and, since f ′(x0) 6= 0, k → 0 implies h → 0 so that oh[1] iff ok[1]. Then,
h

f ′(x0)
· ok[1] = k·ok[1]

f ′(x0)(f ′(x0)+ok[1])
= k · ok[1]

Fundamental Theorem

For most calculus students, stressing the ”antiderivative aspect” is more importan than
stressing the ”measure theoretic aspect”. So, following Picard [9], the Fundamental Theo-
rem is proven by solving, using finite differences, the initial value problem: Given a function
f(x), find the value at x1 of a function F (x) such that F (x0) = y0 and F ′(x) = f(x).

If we assume the existence of an antiderivative F (x), we have immediately:

F (x0 + h)− F (x0) = F ′(x0)h+ o1[h]

= f(x0) · h+ o1[h]

F (x0 + 2h)− F (x0 + h) = f(x0 + h) · h+ o2[h]

F (x0 + 3h)− F (x0 + 2h) = f(x0 + 2h) · h+ o3[h]

.........................................................................................

F (x0 + nh)− F (x0 + (n− 1)h) = f(x0 + (n− 1)) · h+ on[h]

Adding and cancelling on the left, we get:

F (x)|x1x0 = h

i=n−1∑
i=0

f(x0 + ih) + h

k=n∑
k=1

oi[1]

where the sum
∑k=n

k=1 ok[1] is extremely complicated which is a good reason to let n→∞
as then, for f(x) smooth enough,

∑k=n
k=1 ok[1] will approach 0 and we have

F (x)|x1x0 = h lim
n→∞

k=n−1∑
k=0

f(x0 + kh) = h lim
n→∞

i=n−1∑
i=0

f(xk),

where h
∑k=n−1

k=0 f(xi) is called a Riemann sum, and which we can then easily interpret
geometrically as the approximation of

∫ x1
x0
f(x)dx, the area under the graph of f . We thus

have the Fundamental Theorem:

F (x)|x1x0 =

∫ x1

x0

f(x)dx
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Conclusion

Of course Lagrange did not really succeed since the o[hn] rest on the notion of limit.6 But,
with polynomial algebra as sole prerequisite7 and whether the rules for calculating with
o[hn] be proven or merely stated, the use of asymptotic expansions empowers beginners
and, not least, makes it possible to develop in a particularly transparent way a “coherent
view” of the calculus.8

Appendix: Landau’s Little o’s

i. Given a function g, o[g] near 0 is the set of all functions f that are negligible
compared to, i.e. strictly dominated by, g near 0. By an abuse of notation, instead of

f ∈ o[g], we write f = o[g] to mean that f(h) < g(h)—or that limh→0
f(h)
g(h) = 0. Similarly

near ∞.
ii. We have o[g]±o[g] = o[g] and A·o[g] = o[g] so that, for instance, A3h

3+A4h
4+A5h

5 =

o[h2]. We also have o[g] + o[o[g]] = o[g] and |o[g]|λ = o[gλ].
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