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A treatment for "just plain folks" should first be a mathematically correct one.
Gaps will be necessary but they must be clearly delineated and not require any suspen-
sion of belief. Anything else adds insult to injury.

… Popular aphorism

One arguments advanced in favor of Precalculus is that it allows the "introduction" of
the elementary functions by way of simple concrete situations but nobody seems to have
wondered about what the case actually might be.

In the case of the exponential for instance, Precalculus texts invariably introduce the
sequence 2n. But while it has been held, notably by (Staib 1966) who invoked (Hardy
1908), that "the notion of a limit is most easily grasped in the case of sequences [so that]
the theory of limits [of sequences can then be] exploited in the introduction of all other limit
concepts, including integration", this is by no means self-evident and, in any case, pro-
ceeding from a sequence to a function is a conceptual switch unsettling enough that it would
have to be demonstrably worth it. As it is, extending a sequence to a function is never a triv-
ial matter—think for instance of the extension of n! to the gamma function. But, of course,
we are only supposed to present the sequence as "illustrating the overall behavior of the
function" much as a plot is supposed to announce a graph. Well, that says it all.

For example, Precalculus often focuses on the sequence Pop(nT) of the jump points of
Pop(t), the function giving the number of cells in a petri dish at time t. For instance, letting
the doubling period T equal 1 gives the very misleading plot:
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Pop(n) is a solution of the sequential equation s(n+1) = 2s(n) which is readily solved: From
the initial condition, Pop(0) = 1 = 20 and from the equation, Pop(1) = 2•Pop(0) = 2•20 = 21,
Pop(2) = 2•Pop(1) = 2•21 = 22, … and by induction Pop(n) = 2n. But to conclude that
Pop(t) = 2 t is as unwarranted as "joining plot points smoothly" and in fact false since
Pop(t) is clearly piecewise constant!

What other use could a prior investigation of 2n have? Since a Precalculus introduction
should anticipate the treatment to be used in Calculus, let us first decide how we should
primarily view ex: i. as a function somewhat dual to a power function in that here it is the
exponent that is the input? ii. as the inverse of the antiderivative of the reciprocal function?

iii. as the limit of a deceptively simple power series,∑
 0

 n

 
xi

i!   ?  iv. as a function with a

particular type of growth?

For students fresh out of Basic Algebra, it is tempting, after having extended exponents
from N to Z to Q, to go to R by exponentiating whatever limit process was used to define
irrationals. The problem is that, while it is not too difficult to define irrational powers, the
extension of the usual operations to irrational powers is surprisingly tricky and we cannot
hope to give such students even a remote idea of the difficulties and the preliminary
investigation of 2n is of no help whatsoever.

The second viewpoint became the preferred one some thirty years ago because, even
though the motivation is not exactly … immediate, the proofs—it was still OK to worry
about such things—are much simpler. But, from that viewpoint too, starting with 2n serves
no purpose.

The third point of view, not to be confused with that of Lagrange, is excellently
presented in four of the 158 pages (Levi 1968). The way Levi sets the problem is "to seek a
function f, defined for every real value of x, for which f(x)f(y) = f(x+y). We require that this
function should generalize our notion of exponent (a) by agreeing with it for rational
values of x and (b) by not giving strange results for irrational values of x. Towards
meeting this last requirement we require that f be continuous. (…) If there were such a
function, its series expansion at 0 would be … . Not even a hint of 2n. Indeed, Q is dense in
R but N isn't! By the way, isn't it telling that the expansion of ex should be so much more
… immediate than that of 2x?

With the current popularity of Data Analysis, the fourth viewpoint has gained favor. For
instance, following (Hughes-Hallett, Gleason et al. 1994), it has become fashionable to
define exponential behavior "in contrast" with linear (what they really mean is affine) be-
havior:

To recognize that a function y = f(x) given by a table of data is linear, look for differences in y
values that are constant for equal differences in x.

To recognize that a function P = f(t) given by a table of data is exponential, look for ratios of P
values that are constant for equally spaced t values.

But the phrase "a function given by a table" simply obliterates the essential problem, namely
that of the distinction between sequences and functions.

More appropriately, the fourth viewpoint should present EXP as solution of the initial
value problem f '(x) = f(x), f(0) = 1 (as is now often done to supplement the second



Notes from the Mathematical Underground Spring 99 IMPRIMATUR Page 3

viewpoint) and the only way the investigation of 2n would then make sense is in bringing
about this initial value problem in a natural manner.

Note that if Lucky Larry rewrites Pop(n0+1) = 2Pop(n0) as Pop(n0+1) = Pop(n0)  +
Pop(n0) and remarks that, as soon as n0 is large, Pop(n0+1) is of the form Pop(t0+h) so that
Pop(t0+h) = Pop (t0) + Pop (t0) • h, the Lagrangian definition of the derivative will give him
Pop'(t) = Pop(t). Poor Larry!

In fact, things are bad. We may try to characterize Pop'(t) by PopChange(n) =
Pop(n) – Pop(n–1)

n – (n –1)    =  Pop(n) – Pop(n–1). Since, from the sequential equation, Pop(n-1) =
1
2  Pop(n), we get PopChange(n) = 

1
2  Pop(n) but, from this difference equation, we very

fortunately cannot conclude that Pop'(t) = 
1
2  Pop(t).

If we look at the difference equation for a faster clock, say T = 4, the plot points
dutifully line up on a piecewise constant function:
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Figure 2.

The functional equation is now Pop(n) = 2Pop(n–4) with the initial conditions Pop(0) =
Pop(1) = Pop(2) = Pop(3) = 1 but this is not likely to get us the differential equation any
more easily.

Of course, starting with just one cell was not exactly realistic and we should try to start
with more. But if they are all at the same mitosis stage, the plot will remain the same with
just the output ruler rescaled. We thus take 4 cells at different stages so that there will be a
mitosis at each tick:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cell   #1 1 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8 16
Cell   #2 1 1 1 2 2 2 2 4 4 4 4 8 8 8 8 16 16
Cell   #3 1 1 2 2 2 2 4 4 4 4 8 8 8 8 16 16 16
Cell   #4 1 2 2 2 2 4 4 4 4 8 8 8 8 16 16 16 16

Totals: 4 5 6 7 8 10 12 14 16 20 24 28 32 40 48 56 64

This gives us a more realistic sequence in that the plot points now line up on a piecewise
affine function in which the rate of change doubles from piece to piece:
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However, when we start with more cells (and increase the clock speed accordingly), we find
that the new plot points fall on the same piecewise affine function so that we cannot get
better approximations that way.

What all of this amounts to is that counting cells gets us nowhere. Instead, what we
should try to describe, if only approximately, is their continuous growth. But since this
would require knowledge from biology, we turn to the future value of a principal P during a
time interval T with ρ the interest earned on 1 unit of money during 1 unit of time. There are
two issues: the function FutVal(t) and the value FutVal(T) but the game plan is clear:

a. Start with simple interests, that is accumulate interests on P so that FutVal0(t) =  P + Pρt
= P(1+ρt) is an affine function and FutVal0(T) = P(1+ρT).

b. Now compound at time τ. We get a piecewise affine function as, for t > τ, we accumulate
interests on P(1+ρτ) rather than on just P:

τ t0

P

P(1+ρτ)
Pρτ

P(1+ρτ)[1+ρ(t–τ)]

0

P(1+ρτ)ρ(t–τ)

Figure 4.

Compounding at τ = 
T
2 , we get FutVal1(T) = P





1+ρ
T
2   

2
.

c. Compounding twice, at  
T
3  and 

2T
3  , gives a 3-piece affine function:

for 0 < t  < 
T
3  , FutVal2(t) = P(1+ρt)  and  FutVal2



T

3   = P 1 + ρ
T

3

 
  

 
  
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d. Compounding n times gives a (n+1)-piece affine function FutValn whose limit as n be-

comes large makes graphic sense as does the limit of P





1+ρ
T
n  

n
.

e. What of the differential equation? The function that gives the rate of change—let us call it
the derivative—is piecewise constant. For example, compounding 9 times 3% interests on P
= 100 during T = 60 gives:
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Figure 5.

where FutVal9' was dilated by a factor of about 36. Since 36•FutVal9' approximates

FutVal9, we get that FutVal9 is an approximate solution of f '= 
1
36  f. Indeed, the graph of

100 • exp



t

36   is almost undistinguishable from that of FutVal9.

In the case of COS and SIN, we begin by investigating the projections COSn and SINn of a
point winding on a n-gon. Winding around rectangles, we see how the projections inherit
their symmetries from those of the circuit, around a square why they should translated from
each other and around a diamond why the input ruler should be tick-marked with non-
integers—here multiples of 2 . Because COSn and SINn are piecewise affine, COSn' and
SINn' are piecewise constant and, as n gets large, COSn' begins to look like an approximation
of –SINn and SINn' like an approximation of COSn. When n = 12, we have:
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Whence both the global behavior of COS and SIN and their differential equations.

Altogether then, if Precalculus is really to help "just plain folks" by providing a natural
transition from Basic Algebra to the differential calculus, Precalculus should be the calculus
of piecewise affine and constant functions. Indeed,

i. They are computable by students with just a background in Basic Algebra.
ii. They provide lucid examples for functional terminology.
iii. They give approximate solutions for significant problems.
iv. Sequences of increasingly better approximate solutions can be constructed.
v. They provide a simple initiation to first order differential equations.

Then, Calculus One can concentrate on the convergence of the approximate solutions to
the elementary functions, that is on what happens when the number of pieces goes to infin-
ity just as when we look at a circle as a regular polygon with infinitely many vertices.
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