Reasonable Basic Calculus

Reasonable Basic Calculus

According To The Real World

If Only Because
Signed Decimal Numbers Are The Real "Real Numbers" ${ }^{1}$

Even if the real real world isn't always reasonable!

FreeMathTexts.org
Free as in free beer. Free as in free speech.

Copyright ©2023 A. Schremmer. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Section, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in ??

[^0]
To Françoise.

For bringing out the song ${ }^{2}$ in the Well-Tempered Clavier,
For growing so many, so many trees,
For being, among others, a wonderful cuisinière ${ }^{3}$ and a great knitter, And, neither last nor least, for being a real mathematician: Boundary Value Problems "arise in several branches of physics" ${ }^{4}$.

[^1]
Contents

Preface You Don't Have To Read xi

1. For Whom Standard Books Toll xi
2. For Whom This Text? xiii
3. The Three Things This Text Wants To Do xiv
4. Nano History Of Calculus xv
5. The Paper World xvii
6. Coping With The Paper World xx
7. Reading RBC xxiii
8. Proof Vs. Belief? xxvi
9. Reason Vs. Rigor xxix
Chapter 0 Reasonable Numbers 1
10. Numbers In The Real World 2
11. Issues With Decimal Numbers 6
12. Giving Numbers 8
13. Expressions And Values 12
14. Formulas And Sentences 18
15. Zero And Infinity 21
16. Compactifying Numbers 25
17. Size Of Numbers 29
18. Neighborhoods - Local Expressions 44
Part I Functions Given By Data 61
Chapter 1 Relations Given By Data 63
19. Relations Given By Data-sets 64
20. Relations Given By Data-plots 79
Chapter 2 Functions Given Graphically 93
21. To See Change 93
22. Functions Given By Input-Output Plots 101
23. Functions Given By Curves 114
24. Local Graphs 126
Chapter 3 The Looks Of Functions 141
25. Height 141
26. Height-continuity 147
27. Local Extremes 154
28. Slope 159
29. Slope-continuity 162
30. Concavity 162
31. Concavity-continuity 166
32. Feature Sign-Change Inputs 170
33. Essential Feature-Sign Changes Inputs 181
34. EmptyA 191
35. EmptyB 192
36. Start 193
Part II Calculatable Functions 195
Chapter 4 Input-Output Rules 197
37. Giving Functions Explicitly 197
38. Output $A T$ A Given Number. 199
39. A Few Words of Caution Though. 203
40. Outputs Near A Given Number 204
41. Local Input-Output Rule 210
42. Towards Global Graphs. 220
Part III Appendices 223
Appendix A Dealing With Decimal Numbers 225
43. Computing With Non-Zero Numbers 225
44. Picturing Numbers 229
45. Real World Numbers - Paper World Numerals 231
46. Things To Keep In Mind 235
47. Plain Whole Numbers 236
48. Comparing. 239
49. Adding and Subtracting 240
50. Multiplying and Dividing 241
Appendix B Real Numbers 243
51. What are the real numbers? 243
52. Calculating with real numbers. 245
53. Approximating Real Numbers 246
54. The Real Real Numbers Are The Regular Numbers 248
Appendix C Localization 251
Appendix D Equations - Inequations 253
Appendix E Addition Formulas 255
55. Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares) 255
Appendix F Polynomial Divisions 257
56. Division in Descending Exponents 257
Appendix G Systems of Two First Degree Equations in Two Unknowns 259
57. General case 259
Appendix H List of Agreements 261
Appendix I List of Cautionary Notes 263
Appendix J List of Definitions 265
Appendix K List of Language Notes 267
Appendix L List of Theorems 269
Appendix M List of Procedures 271
Appendix N List of Demos 273

Abstract

Index

What is important is the real world, that is physics, but it can be explained only in mathematical terms. ${ }^{5}$

Preface You Don't Have To Read

For Whom Standard Books Toll, xi • For Whom This Text?, xiii • The Three Things This Text Wants To Do, xiv • Nano History Of Calculus, xv • The Paper World, xvii • Coping With The Paper World, xx • Reading $R B C$, xxiii • Proof Vs. Belief?, xxvi • Reason Vs. Rigor, xxix .

Authors of calculus books invariably claim that their book is different. And of course so does the author of this Reasonable Basic Calculus, $\boldsymbol{R} \boldsymbol{B} \boldsymbol{C}$ for short! But in exactly what way(s)? First, though, how about standard books?

1 For Whom Standard Books Toll

Back in 1988, Underwood Dudley ${ }^{7}$ published in the American Mathematical Monthly a wonderful article about calculus books-camouflaged as a Book Review! ${ }^{8}$ _ which he said he wrote after having "examined 85 separate and distinct calculus books." 9

[^2]Loomis
L'Hospital's Rule pathological
Silvanus Thompson
Hung-Hsi Wu

Dudley's first point was that "Calculus books should be written for students". As an example of one such, Dudley gives Elias Loomis ${ }^{10}$ Elements of the Differential and Integral Calculus ${ }^{11}$ from 1851. He points out that Loomis' "proof of L'Hospital's Rule was short, simple, and clear, and also one which does not appear in modern texts because it fails for certain pathological examples ${ }^{12 " .}$

A bit later, Dudley continues: "It is a still better idea to strive for clarity E.g. G. Strang in his Calculus (p151): "I regard the discussion below as optional in a calculus course (but required in a calculus book)."

At less than $\$ 10$!
Which, these days, would be an unspeakable horror!

Well, RBC sure wasn't!
and let students see what is really going on, which is what Loomis did, rather than putting 'rigor' first. But nowadays, authors cannot do that. They must protect against some colleague snootily writing to the publisher "Evidently Professor Blank is unaware that his so-called proof of L'Hospital Rule is faulty, as the following well-known example shows. I could not possibly adopt a text with such a serious error."

As another example of a book written for students, Dudley gives Silvanus Thompson's ${ }^{13}$ Calculus Made Easy ${ }^{14}$ from 1910 which was very successful and is in fact still in print. Dudley is visibly enchanted to report that "Chapter 1, whose title is 'To Deliver You From The Preliminary Terrors' forthrightly says that dx means 'a little bit of x ". (Significantly enough, Thompson was a professor of physics and an electrical engineer.)

Another important point Dudley made was that "First-semester calculus has no application." Of course there is no question about Calculus being about the Real World. Absolutely none. The only thing is, the Real World is in the eye of the beholder and the beholder usually is, here again, the teacher. And so, of course, Dudley riffes on "Applications being so phony".

Dudley conclusion was that "It is a shame, and probably inevitable that calculus books are written for calculus teachers."

And, indeed, as Dudley predicted, nothing has changed to this day.
In fact, twenty-seven years later, and even though it was about "school math", Hung-Hsi Wu ${ }^{15}$ responded in the Notices of the American Mathematical Society to Elizabeth Green's New York Times article Why Do Americans Stink at Math? ${ }^{16}$ in these terms:

[^3]"If Americans do "stink" at math, clearly it is because they find the math in school to be unlearnable. [...] For the past four decades or so the mathematics contained in standard textbooks has played havoc with the teaching and learning of school mathematics." ${ }^{17}$

2 For Whom This Text?

The short answer is that, inasmuch as, in the words of Leonardo da Vinci (1452-1519), "Learning is the only thing the mind never exhausts, never fears, and never regrets." ${ }^{18}, R B C$ wants to let people who like to read, ponder, wonder, ...develop a Calculus they can use in the real world.

EXAMPLE 0.1. RBC begins with Reasonable Numbers, a "zeroth" chapter on aspects of numbers that are basic to real world calculations but very rarely discussed in Arithmetic textbooks.
Then, to introduce the reader to functions, which are to CALCULUS what numbers are to Arithmetic, RBC continues with Part I which, following Da Vinci, starts with Relations Given By Data namely, as in the experimental sciences, given by way of lists, tables, and plots, and continues with Functions Given Graphically and The Looks Of Functions.
Only then, in Part II, does Calculus proper begin with the introduction of Global Input-Output Rules which are the simplest way to give functions that can be calculated with.

And, by the way, $R B C$ is completely self contained:

- Just in case you missed the subtitle of the book: if you can compare/add/subtract/multiply/divide signed decimal numbers, you need not worry about being "prepared".
- The URLs in the footnotes are just references - mostly to articles in Wikepedia ${ }^{19}$ - to help people curious to know more about the matter at hand.

But even if this short answer may look good, it surely doesn't say very much and what follows are progressively longer answers for those who, before deciding whether or not to get into something, want to know more precisely what it is they would be getting into and why they would want to do that in the first place.

[^4]Da Vinci develop use

In other words, RBC is for people allergic to just being "shown how to do it", for people who like lo look under the hood and even to reinvent the wheel to see what makes it turn...

The reason for so many pages is so many pictures, so many EXAMPLES and so many Demos.

And even if you can't, Dealing With Decimal Numbers (Appendix A, Page 225) will always be a mere click away.

On the other hand, should you prefer to go and see for yourself, clicking on anything in redish characters, for instance in Example 0.1 - For Whom This Text? (Page xiii). will get you there.

Einar Hille
George Sarton John Holt

3 The Three Things This Text Wants To Do

This not-so-short answer begins with the fact that, for the exact same reason Hung-Hsi Wu gave for why "Americans 'stink' at math", it can be maintained that so-called Math Anxiety invariably originates with the standard textbooks, in the best cases because the book leaves so much going without saying that reason has become all but invisible, in the worst cases because the book has been gutted down to the disconnected "facts and skills" deemed necessary to pass some exam so that no reason remains at all.
In contrast, $R B C$ wants to do three things:

- As Einar Hille ${ }^{20}$ wrote, "Mathematics is neither accounting nor the theory of relativity. Mathematics is much more than the sum total of its applicaations no matter how important and diversified these may be. It is a way of thinking." ${ }^{21}$ (Emphasis added.)
Of course, a way of thinking cannot be taught or even described and can only be learned from experience. Fortunately, as George Sarton ${ }^{22}$ wrote, "It is only a matter of perseverance and of good will. Only thus will you acquire a method of thought. And if one cannot reproach anyone for being ignorant of this or that-for ignorance is not a sin-it is legitimate to reproach one with poor reasoning. [...] [T] his scientific sincerity is only achieved by the attentive study of a specific subject." 23

And so, the first thing $R B C$ wants to do is to facilitate your "attentive study" of CALCULUS by presenting matters to you in a way that will make reasonable sense to you.

- As John Holt ${ }^{24}$ wrote, "Human beings are born intelligent. We are by nature question-asking, answer-making, problem-solving animals, and we are extremely good at it, above all when we are little. But under certain conditions, which may exist anywhere and certainly exist almost all of the time in almost all schools, we stop using our greatest intellectual powers, stop wanting to use them, even stop believing that we have them." 25 Which is why $R B C$ does not have any EXERCISE: the important questions are those you will be wondering about. Of course, you would be quite

[^5]
4. NANO HISTORY OF CALCULUS

right to ask how you will know if you have learned calculus but the answer still is: when you will have become able to answer most of your questions by yourself.

And so, the second thing $R B C$ wants to do is to present and discuss issues in a way that will enable you, one day, to look into some further aspects of Calculus all by yourself.

- As Etienne Ghys ${ }^{26}$ wrote, "I have now learned that precision and details are frequently necessary in mathematics, but I am still very fond of promenades. [...] You have to be prepared to get lost from time to time, like in many promenades. [...] You will have to accept half-baked definitions. [...] I am convinced that mathematical ideas and examples precede proofs and definitions." ${ }^{27}$ (Emphasis added.)

And so, the third thing $R B C$ wants to do is to be a pleasant promenade for you.

4 Nano History Of Calculus

For the philosophically inclined, the history of how CALCULUS came about ${ }^{28}$ can be fascinating but for those just a tiny little bit curious, here is probably the shortest possible version:

Calculus was created in the late 1600s, first by Newton ${ }^{a}$, initially by way of infinitesimals ${ }^{b}$ but eventually by way of limits ${ }^{c}$, and, a bit later but completely independently, by Leibniz ${ }^{d}$, by way of infinitesimals.

The first of the many editions of the first Calculus text, Infinitesimal Calculus with Application to Curved Lines, by L'Hospital ${ }^{e}$, is from 1696.

Right away, all scientists, engineers and mathematicians - except British ones, presumably out of loyalty to Newton - started using infinitesimals routinely even though it was almost immediately realized that infinitesimalsas well as limits-were not rigorously defined. (Bishop Berkely even called them "ghost of departed quantities"f.)

And, even though, over a century later, most mathematicians switched to limits which had finally been rigorously defined by Cauchy ${ }^{g}$, scientists, and for a long time even differential geometers, continued to use infinitesimals ${ }^{h}$

[^6]hyperreal number
Fields Medal
Lagrange
polynomial approximation decimal approximation
Henri Poincaré
asymptotic expansion
Poincaré expansion

Guess what: 'infinitesimals' are still avoided like the plague by most mathematicians not to men-tion--but that goes without saying--math teachers!

Of course, unlike Lagrange, RBC will not deal with pathological cases.

Most unfortunately, though, most teachers still confuse polynomial approximations, which have only so many terms, with 'Taylor series' which have infinitely many terms and which RBC will stay away from.

Then, in 1961, Abraham Robinson ${ }^{i}$, three years over the age limit for the Fields Medal ${ }^{j}$, finally succeeded in defining infinitesimals rigorously using the hyperreal numbers ${ }^{k, l}$ that Edwin Hewitt ${ }^{m}$ had pioneered in 1948.

Yet, as Vladimir Arnold ${ }^{n}$-a great mathetician who was prevented from getting the Fields Medal because of his public opposition to the persecution of dissidents in the Soviet Union during most of the 1970s and 1980s-wrote in 1990: "Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it."

On the other hand, a long time before all that, around 1800, Lagrange ${ }^{o}$, one of the greatest mathematicians ever, who explicitly wanted to free CALCULUS from "any consideration of infinitesimals, vanishing quantities, limits and fluxions", had developed an approach by way of polynomial approximations, which are to Calculus what decimal approximations are to ArithmETIC. And, even though, having realized that polynomial approximations could not deal with certain pathological cases, Lagrange had reverted to infinitesimals, polynomial approximations will be what $R B C$ will employ.

In fact, beginning around 1880, yet another all time great mathematician, (Henri) Poincaré ${ }^{p}$, had employed polynomial approximations to solve a very large number of problems so that Lagrange's polynomial approximations are now known as Poincaré expansions or asymptotic expansions ${ }^{q}$.

[^7]
5 The Paper World

The long answer begins with the fact that dealing with the real world, in the sciences as well as in the trades, requires a paper world involving two languages ${ }^{14}$, each with its own words, nouns ${ }^{15}$, adjectives ${ }^{16}$ and verbs ${ }^{17}$:
A. An object language which in $R B C$ will be the calculus language with its calculus words, namely calculus nouns, calculus adjectives, and calculus verbs,

EXAMPLE 0.2. Carpenters have an object language that includes words such as ledger, purlin, riser, stringer, etc ${ }^{a}$

[^8]B. A metalanguage which in $R B C$ will be ordinary English with its ordinary English words, namely ordinary English nouns, ordinary English adjectives, and ordinary English verbs.
paper world
word
noun adjective
verb
object language
calculus language
calculus word
calculus noun calculus adjective calculus verb metalanguage ordinary English
ordinary English word
ordinary English noun
ordinary English adjective calculus verb
Eugene Wigner
employ

EXAMPLE 0.3. When the French author of RBC first learned English, ordinary English was his object language and French was his metalanguage.

Concerning the relevance of the paper world to the real world, here are two articles very much to the point:

- A very famous, if somewhat dense, article on "The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics." ${ }^{a}$ by Eugene Wigner ${ }^{b}$,
which eventually started:
- A lively discussion on natural law and mathematics in Quanta Magazine ${ }^{c}$
${ }^{a}$ https://www.maths.ed.ac.uk/~v1ranick/papers/wigner.pdf
${ }^{b}$ https://en.wikipedia.org/wiki/Eugene_Wigner
${ }^{c}$ https://www.quantamagazine.org/puzzle-solution-natural-law-and-elegant-math-20200117/

LANGUAGE 0.1 $R B C$ will distinguish between the calculus words use and employ. This may be overdoing things a bit but will help

[^9]Model Theory
grammar
sentence
calculus grammar
calculus sentence
ordinary English grammar
ordinary English sentence
syntactics
mark the difference between the two roles the reader will play in $R B C$ namely:

- the reader learning to develop Calculus who, for instance and as we will see, will employ Generic given numbers (Subsection 3.2, Page 9) to keep things open,
and
- the reader learning to use CALCULUS who will use given numbers of their own choice.

This explicit distinction between real world and paper world is at the core of a relatively new part of Mathematics called Model Theory ${ }^{18}$.

1. Syntactics The paper world should also include grammars ${ }^{19}$ to assemble words into sentences ${ }^{20}$ independently of any reference to the real world:

- A calculus grammar for assembling calculus words into calculus sentences.

Since an understanding of the calculus grammar is necessary to develop Calculus, $R B C$ will introduce the calculus grammatical rules as and when needed.

- An ordinary English grammar for assembling ordinary English words into ordinary English sentences but what grammar the reader learned in school will normally be quite enough to deal with the ordinary English of $R B C$ and therefore

AGREEMENT 0.1 In $R B C$, ordinary English grammar will go completely without saying.

FOR THOSE INTERESTED: There is actually a lot more to languages than assembling words into sentences and syntactics ${ }^{21}$ includes issues such as word order, grammatical relations, hierarchical sentence structures, etc

[^10]2. Semantics. While $R B C$ takes the knowledge of ordinary English for granted, the semantics ${ }^{22}$ of the calculus language, that is "The question of what is a proper basis for deciding how words, symbols, ideas and beliefs may properly be considered to truthfully refer to meaning. ${ }^{23}$ must be discussed.

The difficulty is in the several ways in which the calculus language and the ordinary English language are inextricably tied.
i. The first way is how ordinary English is employed to make precise the meaning of ordinary English words then to be employed as calculus word by describing as precisely as possible the entities in the real world to be refered to.

Example 0.4. As Chief Inspector Kan reminds Inspector Van der Valk in Criminal Conversation ${ }^{a}$, Nicolas Freeling ${ }^{b}$'s thriller, "Law depends on the precise meaning of words".

[^11]ii. Then, inasmuch as $R B C$ will be restricted to calculus statements, that is to calculus sentences saying something clear and precise, ordinary English will be employed to decide the truth value ${ }^{25}$ of calculus statements, that is whether the calculus statements are TRUE or FALSE, that is whether what the calculus statements say about the real world is or is not actually the case.

EXAMPLE 0.5. Assume-just for the sake of this EXAMPLE-that ordinary English is our object language.
Then, both "The moon is made of green cheese" a and "The moon is dreaming" are (grammatically correct) sentences in the object language but, while the sentence "The moon is made of green cheese" is a (FALSE) statement, what the sentence "The moon is dreaming" says is not clear so that the sentence "The moon is dreaming" is not a statement and thus neither TRUE nor FALSE.

[^12]This model-theoretic view of truth is due to Alfred Tarski ${ }^{26}$ who "[would

[^13]stand
model theory
explain

Which can be eaten.

Or, you may want to look
up the author's A ModelTheoretic Introduction to Mathematics ${ }^{27}$.

Actually, it would be totally counterproductive.
however not] claim [it was] the 'right' one [other than in mathematics]."
iii. Because the real world entities that the calculus words refer to cannot be exhibited in the paper world, the third way ordinary English words will be employed will be by standing in the paper world for real world entities. So, we will often employ the same ordinary English word both as a stand-in for a real world entity and as a paper world name for that entity.
However, other kinds of paper world stand-ins such as drawings, pictures, etc can be employed too.

EXAMPLE 0.6. Assume-just for the sake of this EXAMPLE—that the object language is French. Then, the French word "pomme" is the word in the object language refering to the real world entity whose paper world stand-in could be any of:

- The ordinary English word "apple",
- The drawing \circlearrowleft,
- The picture

However, while remaining aware of how essential the distinction between the object language and the metalanguage is, systematically distinguishing ordinary English words as calculus words from ordinary English words as stand-in word and refering to from standing-in for, would not serve any purpose in $R B C$. So:

AGREEMENT 0.2 $\quad R B C$ will often use ordinary English words both as calculus words to refer to real world entities and as stand-in words for the real world entities.

EXAMPLE 0.6. (Continued) The French word "pomme" would then standin for, as well as refer to, the real world entity.

6 Coping With The Paper World

The meaning of all the calculus words to be employed in $R B C$ cannot of course be explained in this Preface You Don't Have To Read but will appear progressively throughout $R B C$, when and as needed. The following is only about the way $R B C$ deals with the semantics of the calculus language.

[^14]1. Calculus words. In order for the meaning of calculus words to be precise, each and every calculus word will be explained with: (a) ordinary English words and calculus words that have already been explained, followed by (b) an EXAMPLE to illustrate how the calculus word is used.

Most of the time, that will be enough for the reader to keep on trucking safely but, occasionally, it will be necessary to define a calculus word with a a Definition that is a more formal explanation in terms of only already explained calculus words which will appear in a special format as in:

DEFINITION 0.1 Meaningless is a synonym of "without meaning".
2. Diversity. But the chances of misunderstanding go beyond misunderstanding between you, the reader, and $R B C$ or between you and other readers of $R B C$ and there can also be misunderstanding between you and other texts and/or between you and readers of other texts, because:

Language 0.2 The calculus language evolved as Calculus itself was being developed and different mathematicians, to help them focus on exactly what they were doing, often re-defined calculus words that already had a meaning given by other mathematicians with their definitions.
In any case, other than the word pathological every once in a while, $R B C$ will never employ words that mathematicians often employ but never really define! ${ }^{a}$
${ }^{a}$ https://en.wikipedia.org/wiki/List_of_mathematical_jargon)
3. Lightness. A danger for a text that wants to explain is to explain too much and thereby become insufferable. So, in order to lighten things up, $R B C$ will not be above taking liberties with the calculus language but,

Agreement 0.3 Any particular shortcut, such as abbreviating long words by letting parts going without saying and/or other such liberties will always be acknowledged by an Agreement in this format.
symbol
notation
calculate
compute
iff

CAUTION 0.1 While unavoidable, letting words go without saying and depending on the context as a reminder is dangerous so to help accustom readers to parts of words eventually going without saying by the terms of an AGreement, $R B C$ will usually hint for a while at what will eventually go without saying.

EXAMPLE 0.6. (Continued) For a while, "pomme" might be clarified with some hint within parentheses such as:
(object language) "pomme"
or
(stand-in) "pomme"
4. Symbols. The calculus language does not consist only of calculus words but also includes symbols and notations ${ }^{28}$ involving symbols.
i. While ordinary English does not lend itself to calculations - aka computations ${ }^{29}$, the calculus language includes many symbols to allow for calculating. ${ }^{30}$

EXAMPLE 0.7. Figuring what would be left of three thousand seventy nine Dollars and eight Cents after spending six hundred forty seven Dollars and twenty six Cents would be a lot harder in ordinary English than computing the difference in the Base Ten language ${ }^{a}$:

$$
\$ 3079.08
$$

$$
-\$ 647.26
$$

But then we could just spend the money to see what's left!
${ }^{a}$ https://en.wikipedia.org/wiki/Hindu\�\�\�Arabic_numeral_system
However, the description of both symbols and notations that $R B C$ will employ does not belong to this Preface You Don't Have To Read and will be described as needed.
ii. But not all symbols will be for computational purposes and a few are just like abbreviations. For instance, $R B C$ will employ the following two symbols which, although standard, are relatively recent inventions with which the reader may not be acquainted:

[^15]LANGUAGE 0.3 iff, read "if and only if", is the symbol that indicates of two sentences that neither sentence can be TRUE without the other sentence also being TRUE and therefore that neither sentence can be FALSE without the other sentence also being FALSE. ${ }^{a}$

[^16]EXAMPLE 0.8. The sentence "Jack is to the right of Jill iff Jill is to the left of Jack" is TRUE.
iff is not to be confused with $I F F^{31}$

But why is"Jack sits to the right of Jill iff Jill sits to the left of Jack" FALSE?

LANGUAGE $0.4 \square$, read "Q.E.D.", is the symbol that indicates the end of a proof. ${ }^{a}$

```
a}\mathrm{ https://www.urbandictionary.com/define.php?term=QED
```

5. No pronoun. And, last but not least, because it is extremely easy not to remember and/or not to see for which previous noun in a sentence a pronoun stands for, $R B C$ tries never to use pronouns even at the cost of having to repeat the noun itself.
[^17]EXAMPLE 0.9. Instead of saying:
The mountain has a forest and a lake and it is beautiful. RBC would say:

The mountain has a forest and a lake and the mountain

> the forest
the lake
the mountain with the forest the mountain with the lake the forest with the lake the mountain with the forest and the lake (whichever is intended) is beautiful.

7 Reading RBC

To begin with, while reading Mathematics need not be forbidding, there is no denying that reading Mathematics is never easy.

[^18]No matter who you are:
"Don't just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs."
Paul R. Halmos, I Want to be a Mathematician ${ }^{32}$
reason
given

In other words, you got to give reason a reasonable time to think in. (Sorry, couldn't help it.)

Like you might finally really see the reason for something in Relations Given By Data only somewhere in ??.

Remember, there will be no EXERCISE in $R B C$ and it will be entirely up to you to wonder about matters.

1. Reading mathematics in general. The first thing to be emphasized is that it is impossible for anybody to get from a single reading of just about any part of any scientific text everything that's there.

This is because it is impossible for any piece of any scientific text to "say it all" because any piece of text will have to rely on some things having been said earlier, to prepare the ground, and some things can only be said later, when everything has been made ready to nail down the matter.

So, to begin with, the first thing people thinking of reading $R B C$ ought to realize is that nobody can understand any scientific text, let alone mathematics text, not even this one, in just one reading. Absolutely nobody. For $R B C$ really to make reasonable sense to you, you will have to re-read $R B C$, more than once.

And, in particular, there are a couple of standard maneuvers used by mathematicians when they are reading a text and, like you will too, run into something they don't get:

- Back \& Forth maneuver! If, even after you have made sure of the meaning of every single calculus word in the piece of text you are having trouble with, you know you still don't really get the message or something still does not make sense to you, then try going back to a place in the text with which you have made your peace and reread it anyway. You will probably discover things you had not thought of when reading it the first time. Now read forward till you reach that place where you stalled and it may very well be that those new things you hadn't thought of before will now help you make it through.
- Wait \& See maneuver. If you do get what a piece of text is saying but just don't really see what the "point" is, make a note of your misgivings and keep on reading. Eventually you will probably have the "Aha", that is you will now realize that the "point" of the piece of text you had trouble with was to support what you are reading now.
Finally, and more generally, even though, along with the discussions, there will always be EXAMPLES of what's being discussed, in order to really understand what is going on, you, the reader, willl have to give yourself other instances and examples of whatever is being discussed which is why the word give will appear very frequently as a reminder for you to give yourself, and discuss, your own EXAMPLES.

In any case, though, the best approach is for two or three people to read the text simultaneoulsy but separately and then to confront their understandings.

Altogether then, and for whatever it is worth, the first way $R B C$ claims Explicit? Extreme? Exces- to be different is the explicit attention being paid to matters of language. sive?
2. The two major obstacles. Because you will want to think about what's going on rather than try to memorize what $R B C$ is saying, $R B C$ wants to be as immediately transparent as at all possible. However, there two obstacles

- What goes without saying
- What is too "costly" to say it completely precisely. Not favorable to hard questioning
The fact that many calculus words are just ordinary English words to which a very precise meaning has been assigned is a major obstacle to learning the calculus language as the danger is for the reader facing later a calculus word to forget the precise meaning of the calculus word and to go by the meaning of the ordinary English word. Which, unfortunately, is exactly when things will stop making sense.

And, to make things even worse, $R B C$ will have to use these calculus words alongside ordinary English word because it is of course with ordinary English words that $R B C$ will describe and discuss what will be done with the calculus words and explain why things are being done that way.
3. Looking up the Index. Since, at least initially it is not easy to keep in mind precisely what calculus words refer to, like any standard book, $R B C$ will help you retrieve what calculus words and symbols precisely refer to by having every single one of these calculus words and symbols listed in the Index at the end of the book along with the page where the calculus word or symbol appears in bold black characters in the text-as well as in red characters at the top of the margin of that page - and is explained and/or defined.

Using the Index more than occasionally, though, even onscreen, is a huge pain which makes it extremely likely you will put off looking up what the calculus word refers to precisely and rely instead on the ordinary English word, ... and then be left facing text that makes no sense.
4. Clicking. And so, another thing that is different with $R B C$ is that $R B C$ was written to be read in $\mathbf{p d f}^{33}$ form so that, onscreen, once introduced calculus word will always appear in reddish characters and clicking on that calculus word will instantly get you to the page where the word is explained.

In fact, and more generally,

[^19]And therefore to understanding calculus,

Why do some people brandish mathematics words like space, catastrophe, field, category, ... whose meaning they don't really know? To And a achiervigg trannsparency isn't easy either.

Onscreen, a click on the page number will get you there.

As already mentioned on the title page. But what to click on to return to where you were will depend on your pdf reader.
factual evidence general statement

Want to take a break from this Preface You Don't Have To Read? Just click on, for instance, To be or not to be functional or Compact views.

Agreement 0.4 Anything, anywhere, that appears in reddish characters is a click away from what that thing is about:

- Titles in all tables of contents,
- Page numbers in all references,
- References as in Definition B. 2 or ?? or as in the Blue Note just in the margin.

However,

CAUTION 0.2 Calculus words are not clickable in either EXAMPLES or DEMOS, the idea being this will "incite" you to get back to whatever explanation, DEFINITION or Procedure the EXAMPLE or the DEMO is an illustration of-and where calculus words are clickable.

8 Proof Vs. Belief?

Another way $R B C$ claims to be different has to do with the way $R B C$ deals
A much debated issue-at least by some people.
with the question of how to decide if a sentence is TRUE or FALSE or whether the truth of the sentence might be undecidable?

1. In everyday life. With some isolated statements, it is possible to decide whether of not the statement is TRUE or FALSE on the basis of factual evidence, that is by checking what the statement is saying directly against the real world. ${ }^{34}$

Unfortunately, the truth of most statements cannot be obtained by checking against the real world.

EXAMPLE 0.10. We can decide that the statement " $4+1$ is larger than 4" is TRUE by trying to match $\infty \infty \infty \infty \infty$ But can we do that with the statement "400000000000000000000+1 is larger than 400000000000000000000 " ?

And general statements are simply impossible to check against the real world.

EXAMPLE 0.10. (Continued) And, even worse, what should we look at in the real world to decide if the statement "Any number plus one is larger than

[^20]the number itself" is TRUE?
Of course, we can check for any number(s) we want but we can't go on checking for ever and so we will never know for absolutely sure that the general statement "Any number plus one is larger than the number itself" is TRUE.

And, contrary to what many people seem to believe these days, just asserting a statement, no matter how many times and/or how forcefully, does not make that statement TRUE. ... And just invoking some other text doesn't work either: maybe the author of that other text had some hidden agenda? Or didn't really know what they were writing about? Or made some honest mistake?

On the other hand, even in everyday life, one cannot believe that each and every sentence being asserted is going to be TRUE.

EXAMPLE 0.11. What would happen, even in everyday life if, for instance, the result of an addition was up to the beliefs of whoever does the addition?

So, some explicit way to decide is necessary even if, at least in everyday life, the matter eventually comes down to being indeed a matter of beliefand therefore of trust.
2. In Mathematics. Scientists and mathematicians on the other hand are not interested in the truth or falsehood of isolated statements but in the description of the real world with theories ${ }^{35}$ that is collections of sentences obtained as follows:
i. Postulate ${ }^{36}$ those sentences that will be the axioms ${ }^{37}$ of the theory, that is list the few sentences believed to have to be in the theory, and then
ii. Prove that other sentences are also theorems, that is are also in the theory, by employing natural deductive rules ${ }^{38}$ on axioms and/or sentences already proven to be theorems.

Then, because of Gödel's Completeness Theorem ${ }^{40}$, the truth of a sentence will derive from the truth of the axioms and of the sentence(s) from which the natural deductive rules proved that the sentence was a theorem.

[^21]Thus the natural deductive rules ultimately reduce the question TRUE or FALSE about each one of the many theorems in the theory to the question TRUE or FALSE about only the few axioms underlying the theory. (Which is not to say that all sentences in the (object) language can be proven to be true or false. ${ }^{41}$)

Proofs are checked by making them available to the relevant part of the

Sometimes, though, axioms are picked just out of curiosity, just to see what theorems could be proven from postulating these axioms as opposed to those other axioms. No end to curiosity.

Hopefully, though, the proofs will be good enough to be "convincing arguments".
mathematical community and there is thus a kind of "social contract". ${ }^{42}$

On what basis the axioms are chosen, though, is a totally separate issue. Axioms are sometimes conjectured ${ }^{43}$ on the basis of some observation of the real world but usually on the basis of some already "accepted" theory. So, since belief is based on trust, when all is said and done, which axioms you choose is a matter of trust, much like what "the rest of us" do in the real world.

CAUTION 0.3 Since readers of $R B C$ have yet to become mathematicians, the way THEOREMS will be proven in $R B C$ will bear only a distant resemblance with proofs as understood by mathematicians and described above.
3. How falsehood can spread even in mathematics. We must always keep in mind, though, that deductive rules can spread falsehood like wildfire.

EXAMPLE 0.12. One of the deductive rules in algebra is that "adding equals to equals yields equals". Now:

- If we accept a TRUE sentence like $4+5$ and $6+3$ are equal as a theorem, then adding, for instance, 7 to each of $4+5$ and $6+3$ will force us to accept the sentence $4+5+7$ and $6+3+7$ are equal as a theorem too which is fine inasmuch as the sentence 16 and 16 are equal is indeed TRUE,
But:
- If we accept a FALSE sentence like $4+5$ and $6+2$ are equal as a theorem, then:
- adding, for instance, 7 to each of $4+5$ and $6+2$ will force us to accept

[^22]the sentence $4+5+7$ and $6+2+7$ are equal as a theorem too which is unfortunate inasmuch as the sentence 16 and 15 are equal is in fact FALSE. And then, even worse,

- adding, for instance, 7 to each of $4+5+7$ and $6+2+7$ will now force us to accept the sentence $4+5+7+7$ and $6+2+7+7$ are equal also as a theoren which is unfortunate inasmuch as the sentence 23 and 22 are equal is in fact FALSE. And then, still worse,
- adding, for instance, 7 to each of $4+5+7+7$ and $6+2+7+7$ will now force us to accept the sentence $4+5+7+7+7$ and $6+2+7+7+7$ are equal also as a theorem which is unfortunate inasmuch as the sentence 30 and 29 are equal is in fact FALSE. And then, even still worse,
- Etc

4. In the sciences. Just to clarify,

CAUTION 0.4 A scientific theory ${ }^{a}$ is a much more complicated thing than a mathematical theory.

[^23]
9 Reason Vs. Rigor

So, since the foremost fear in MATHEMATICS is making a mistake in a proof, and thereby getting as theorem a sentence which may actually be FALSE, mathematicians proceed as rigorously ${ }^{44}$ as possible, that is provide as many steps in the proof as they possibly can-that is while remaining "readable"and are always able, willing and ready to provide missing steps on demand.

Unfortunately, CALCULUS has been extraordinarily difficult to develop rigorously

EXAMPLE 0.13. While 'Delta functions' ${ }^{a}$ had been used since the early eighteen hundreds, it was only in 1950 that Laurent Schwartz ${ }^{b}$ was awarded the Fields Medal for having defined 'Delta functions' rigorously.

[^24][^25]But you don't have to worry since, after all, $R B C$ is in MATHEMATICS.

That's what refereeing is all about.

Whatever 'Delta functions' xxx
say that, at this time, you are neither assumed nor supposed to know what 'Delta functions' are.

As physicist David Hestenes ${ }^{48}$ said at the outset of his 2002 Oersted lecture:
Taking course content as given [...] ignores the possibility of improving pedagogy by reconstructing course content.

```
b}\mathrm{ https://en.wikipedia.org/wiki/Laurent_Schwartz
```

As a result, the number one question for authors of calculus texts is how rigorous to be. A few texts, titled Real Analysis ${ }^{45}$, are as completely rigorous as at all possible but the rest, just titled Calculus, are far from being rigorous as they skip whatever the author thinks will be too much for the buyers.

But, while $R B C$ is just as far as standard texts from being rigorous, there is a very big difference: standard texts retain, however un-rigorously, the modus operandi i^{46} of mathematicians while $R B C$ aims at communicating the way hard scientists ${ }^{47}$ and engineers have long understood and used CALCULUS-without worrying one bit about its lack of rigor.

Lastly, the conformist reader ought to be reminded that, instead of being based on limits or infinitesimals, as it seems all current calculus textbooks are:

Caution 0.5 In $R B C$, Calculus will be developed by way of polynomial approximations which are the equivalent in Calculus of the decimal approximations used by scientists and engineers in applications of Calculus to the real world.

And here, Ladies and Gentlemen, is where this Preface You Don't Have To Read finally comes to an end.

[^26]When you have mastered numbers, you will in fact no longer be reading numbers, any more than you read words when reading books. You will be reading meanings. ${ }^{14}$

Harold Geneen ${ }^{15}$

Chapter 0

Reasonable Numbers

Numbers In The Real World, 2 • Issues With Decimal Numbers, 6 - Giving Numbers, 8 • Expressions And Values, 12 • Formulas And Sentences, 18 • Zero And Infinity, 21 • Compactifying Numbers, 25 - Size Of Numbers, 29 - Neighborhoods - Local Expressions, 44 .

The very purpose of $R B C$, namely to help people "develop a CALCULUS they can use in the real world" (For Whom This Text?, Page xiii), makes it necessary to begin with two separate questions about numbers that, unfortunately, are seldom dealt with in Arithmetic texts:

- What kind of numbers are needed to develop such a Calculus?
- What kind of numbers are needed to use such a Calculus?

Before anything else, though, an important instance of our Use of ordinary English words (Agreement 0.2, Page xx) will be that:

Agreement 0.1 In this Chapter 0, the ordinary English word "number" (https://en.wikipedia.org/wiki/Number) will be used both as a stand-in word for, and as a ordinary English word to designate the various real world entities which are designated in the Arithmetic language by the word numeral (https://en.wikipedia. org/wiki/Numeral).

No, no, this is not going to be your standard Review Of Basic Skills You Shouldn't Have Forgotten!
And you really should read this Chapter if only just to have an idea of what's in it. And don't panic: as you go on, you will always be able to click anything you have trouble with.
And, eventually, it will all make perfect sense.

[^27]number phrase
denominator
quality
numerator
quantity
discrete aspect
collection
item
collection of items
Cantor
set
element

We will not use the word numeral and introduce calculus words to designate these various real world entities which are designated in the Arithmetic language by the word numeral

1 Numbers In The Real World

To begin with, in the real world, numbers are not used all by themselves as in Arithmetic textbooks but in number phrases consisting of:

- A denominator which is a noun indicating quality by saying what is being numbered,
together with
- A numerator which is a number indicating quantity by saying what the numbering resulted in.

EXAMPLE 0.1. The following might occur in the real world:
3 Apples, 5 Feet, 72.4° Farenheit,
$\frac{3}{8}$ Inch, where 3 is tne numerator and "of which $\mathbf{8}$ make up an inch" is the denominator.

And since there are many different aspects to the real world there are many different kinds of number phrases and different kinds of numbers.

But fundamentally there are two basic aspects to the real world that need to be discussed briefly.

1. Discrete aspect of the real world. The simpler aspect of the real world is the discrete aspect which involves collections of items where, to quote Georg Cantor ${ }^{16}$ (1845-1918), the creator of Set TheORY^{17} : "By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammendfassiung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the "elements" of M." ${ }^{18}$

EXAMPLE 0.2. The discrete aspect of light is as a collection of photons. ${ }^{a}$

[^28][^29]LANGUAGE 0.1 $R B C$ does not employ the words set and element, now standard in mathematics ${ }^{a}$, because the ordinary English words collection and item are immediately transparent while the words set and element might seem to call for a knowledge of SET THEORY which is completely irrelevant for RBC

[^30]When dealing with collections of items,

- The denominator in the number phrase for a collection of items simply denotes the kind of items in the collection.
- The numerator in the number phrase for a collection of items will be a whole number but the kind of whole number will depend on the kind of information that is wanted about the collection of items:
- Plain whole numbers when all the information that is wanted is how many items there are in the collection of items
- Signed whole numbers when the information that is wanted is both how many items there are in the collection of items and which way the collection of items is going

EXAMPLE 0.3. When dealing:

- With apples, 3 Apples is the number phrase that denotes the collection かわO.
The numerator is the plain whole number 3 and the denominator is Apples.
- When dealing with boxes of bananas, -5 Boxes of bananas is the number phrase which denotes a collection of five boxes of bananas on its way out, or being owed, or etc.
The numerator is the signed whole number -5 and Boxes of bananas is the denominator.

Collections of items can be listed and lists are very useful to organize information ${ }^{19}$.

More generally, Discrete Mathematics is the part of mathematics dealing with the discrete aspect of the real world ${ }^{20}$.

[^31]whole number
information
plain whole number signed whole number list

Even the fabulous Bourbaki's Theory Of Sets starts: "From a "naive" point of view, many mathematical entities can be considered as collections or "sets" of objects. "!

On Equal Exchange of course.
(https://en. wikipedia.
org/wiki/Equal_
Exchange.)
continuous aspect
amount of stuff
amount
stuff
unit of stuff
decimal number
plain decimal number signed decimal number decimal point
2. Continuous aspect of the real world. The other, more complicated, aspect of the real world is the continuous aspect which involves amounts of stuff. (https://en.wikipedia.org/wiki/Continuum_(measurement).).

EXAMPLE 0.4. The continuous aspect of light is as an amount of radiation. (https://en.wikipedia.org/wiki/Light.)

When dealing with amounts of stuff,

- The denominator in the number phrase requires the prior definition of a unit of stuff which is then used as denominator.
- The numerator in the number phrases for an amount of stuff will be a decimal numbers but the kind of decimal number will again depend on the kind of information that is wanted about the amount of stuff:
- Plain decimal numbers when all the information that is wanted is how much stuff there is in the amount of stuff
- Signed decimal numbers when the information that is wanted is both how much stuff there is in the amount of stuff and which way the amount of stuff is going

EXAMPLE 0.5. When dealing with milk, after we have taken as unit of milk,

- 3.4 Gallon of milk is the number phrase that denotes the amount of milk in C- $\mathrm{Cl}^{-}=$
The numerator is the plain decimal number 3.4 and the denominator is the unit of milk, namely Gallon of milk
- +5.7 Gallon of milk is the number phrase which denotes an amount of milk on its way in, or being due in, or etc.
The numerator is the signed decimal number +5.7 and the denominator is the unit of milk, namely Gallon of milk.

Agreement 0.2 In RBC, decimal numbers will always be written with a decimal point to the right of some digit.

EXAMPLE 0.6.

- . 783 is not a plain decimal number because the decimal point is not to the right of a digit,
- -783 . is a signed decimal number,
- 0.27 is a plain decimal number.

And, finally, a matter to be discussed in Giving Numbers (Section 3, Page 8),

CAUTION 0.1 Signed numbers, whether (signed decimal) numbers or signed whole numbers, do not include zero which will be discussed in Open numbers vs. fixed numbers

Since Calculus is the part of mathematics dealing with the continuous aspect of the real world (https://en.wikipedia.org/wiki/Calculus), $R B C$ will employ signed decimal numbers and plain decimal numbers but:

CAUTION 0.2 $R B C$ will never employ real numbers and or any other numbers such as fractions, mixed numbers, rational numbers, irrational numbers, complex numbers, etc .
signed number
rational number
irrational number fraction mixed number real number complex number count
measure
error

If you want to know why no so-called real numbers, see ??.
3. Whole numbers vs. decimal numbers. Even though CalcuLUS deals with amounts of stuff, $R B C$ will often use collections of items, and therefore whole numbers in EXAMPLES and DEMOS .

Moreover, it will occasionally be enlightening to contrast some aspects of whole numbers with the corresponding aspects of decimal numbers. For instance:

- We get the plain whole number which is the size of a collection of items by counting the items in the collection (https://en.wikipedia.org/ wiki/Counting),
but
- We get the plain decimal number which is the size of an amount of stuff by measuring the amount of stuff, (https://en.wikipedia.org/wiki/ Measurement).
This is a major difference because
- Counting a collection of items is, at least usually, simple enough, and provides a single, definite plain whole number,
while
- Measuring an amount of stuff is complicated because, not only does measuring unavoidably involve making some error due to such matters as the quality of the equipment and/or the ability of the user of the equipment,
uncertainty
measured number
Timothy Gowers digit
non-zero digit
leading zero
trailing zero
but also because there is unavoidably going to be some uncertainty in the size of the error and therefore in the measured number.

EXAMPLE 0.7. We cannot really say "I drank 2.3 cups of milk" because how much milk we really drank depends on the care with which the amount of milk was measured, how much was left in the bottle, etc. The uncertainty may of course be too small to matter ... but then may not.

In fact,

> As Timothy Gowers (https://en.wikipedia.org/wiki/ Timothy_Gowers, (Fields Medal 1998) puts it in the $6^{\text {th }}$ paragraph of https://www.dpmms.cam.ac.uk/ $/$ wtg10/continuity.html):
> "Physical measurements are not real numbers. That is, a measurement of a physical quantity will not be an exactly accurate infinite decimal. Rather, it will usually be given in the form of a finite decimal together with some error estimate: $x=3.14 \pm 0.02^{a}$ or something like that."

[^32]Right now, you won't be able to make much sense of the rest of Gowers' text but even a cursory glance will show his concern with the real world.

2 Issues With Decimal Numbers

This is a majpr issueswith signed decimal numbers which, while not directly relevant to the development of Calculus, is most important for the use of Calculus in the experimental sciences and engineering.

1. How many digits in a number. To begin with, it is not immediately obvious how many digits (https://en.wikipedia.org/wiki/ Numerical_digit) there really are in a signed decimal number because one of the digits being used to write signed decimal numbers, namely the digit 0 , behaves very differently from the non-zero digits if only because of leading zeros (https://en.wikipedia.org/wiki/Leading_zero) and trailing zeros (https://en.wikipedia.org/wiki/Trailing_zero).

EXAMPLE 0.8. How many digits are there in 00000000.00120034000000 ?
Answer: Nine, namely 0.00120034
Because, if we take out any more 0 , we will be left with either a different decimal number, say 0.0120034 or 0.0012034 , and, if we don't leave at least
one 0 before the decimal point, we will be left with .00120034 which is not a decimal number because there is no digit being pointed.
figure sthe time but it won't in RBC.

Language 0.2 Figure is a word often used instead of digit but $R B C$ will stick with the word digit,
2. Importance of the digits. Not all digits in a decimal number have the same importance.
a. The more non-zero digits a signed decimal number has, whether left or right or both sides of the decimal point, the less likely the signed decimal number is to designate anything in the real world.

EXAMPLE 0.9. None of the following numbers is likely to designate anything in the real world:
$+602528403339145485295666038294891392775987378000261234386384$ 558003000384203771790349303000000000809234329262234085108500 000002891038456666 •
-0॰602 528403339145485295666038294891392775987378000261234386384
558003000384203771790349303000000000809234329262234085108500 000002891038456666
+602528403339145485295666038294891392775987378000261234386384 $558003000384203771790349303000000000809234329 \bullet 262234085108500$ 000002891038456666
b. Indeed, only so many digits in a signed decimal number can be significant digits, that is can correspond to any particular precision in the measurement. (https://en.wikipedia.org/wiki/Significant_figures

EXAMPLE 0.10. To say that "the estimated population of the US was "328 285992 as of January 12, 2019" (https://en.wikipedia.org/wiki/ DEMOgraphy_of_the_United_States on 2019/02/06) is not reasonable because at least the rightmost digit, 2 , is certainly not a significant digit: on that day, some people died and some babies were born so the population could just as well have been designated as, say, 328285991 or 328285994.

The numbers in https://en.wikipedia.org/wiki/ Iron_and_steel_industry_in_the_United_States are much more reasonable: 'In 2014, the United States [. . .] produced' 29 million metric tons of pig
reasonable signed decimal number open number
iron and 88 million tons of steel." Similarly, "Employment as of 2014 was 149,000 people employed in iron and steel mills, and 69,000 in foundries. The value of iron and steel produced in 2014 was 113 billion."
3. Issues with significant digits.. There are two main issues:

- Deciding which digit(s) in the measurement of an amount of stuff, if any, is/are significant digits which depends on the precision with which the real world is being measured and, as such, is not directly relevant to CALCULUS.
- Deciding how many digits in the result of a calculation are significant digits (https://en.wikipedia.org/wiki/Significant_figures\#Arithmetic) which is essentially a matter of Arithmetic rather than of Calculus .

However, neither one of these issues will be of concern in $R B C$ and reasonable signed decimal numbers will be signed decimal numbers with only so many significant digits.

3 Giving Numbers

When all has been said and done, in $R B C$ Calculus is about being used by non-mathematicians and for non-mathematical purposes and this raises paricular issues that, at the very least, need to be acknowledged.

The fact that Calculus eventually has to used by non-mathematicians and for non-mathematical purposes is often overlooked and a few issues will be discussed here.
the following issues will have to distinguished:

- Issues users will face after a number has been given, from
- Issues users will face before a number has been given.

1. Open numbers vs. fixed numbers. https://en.wikipedia. org/wiki/Mathematical_constant https://en.wikipedia.org/wiki/Constant_(mathematics)
A difficulty the user faces even before giving a number is determining whether, in a situation, a number is:

- An open number in the situtation, that is a number that can be changed to any other number in that situation.

EXAMPLE 0.11. The people of Jacksville are considering paving part of the parking lot next to Township Hall and since both the length and the
width of the area to be paved are open numbers, people are discussing the pro and con of 20 ft long by 100 feet wide versus 60 ft long by 60 feet wide versus 100 ft long by 30 feet wide versus etc, etc.
or

- A fixed number in the situtation, that is a number that cannot be changed to any other number in that situation.

EXAMPLE 0.12. The people in Jillsburg are considering paving part of the road from City Hall down to the river but, since the width of a road is fixed by the County, only the length of the area to be paved is an open number and people are discussing the pro and con of 300 ft long versus 1000 ft long versus 500 ft long versus etc, etc.

Language 0.3 What we call fixed numbers are also called constants.

EXAMPLE 0.13. The circumference of a circle of diameter 702.36 is equal to 3.14159×702.36
(https://en.wikipedia.org/wiki/Circumference\#Circle),
Here, 702.36 is an open number because 702.36 can be replaced by any other number to get the circumference of a circle with that diameter but 3.14159 is a fixed number that cannot be replaced by any other number. (https: //en.wikipedia.org/wiki/Pi)
2. Generic given numbers. Calculus is used with given numbers, that is with numbers to be given by the user.

But the difficulty in explaining issues that will face the user after a number has been given is that $R B C$ don't know what number the user will have given.

So, while the user will indeed be the one to give numbers, at least in the Procedures, $R B C$, will have to employ generic given numbers, that is temporary substitutes for the numbers eventually to be given by the user:

DEfinition 0.1 The generic given numbers will be the symbols: $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}$, etc, and $\boldsymbol{y}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{2}}$, etc.
specify
required number
tolerance
cap
But of course, in EXAMPLES and DEMOS $R B C$ will just give actual given numbers.
3. Specifying an amount of stuff. Because of the uncertainty intrinsic to measurements, there is more to specifying an amount of stuff (https://en.wikipedia.org/wiki/Specification_(technical_standard)) than just giving the required number:

CAUTION 0.3 A number cannot specify an amount just by itself:

So, scientists and engineers use specifications that consist of two numbers:

- A required number to designate the amount of stuff they require,
- A tolerance, that is a cap on the size of the error, that is on how much the measured number will be allowed to differ from the required number (https://en.wikipedia.org/wiki/Engineering_tolerance).

EXAMPLE 0.14. When we want to buy a amount of milk, say " 6.4 quarts of milk", to find out if we got our money's worth, we will have to measure how much mild we got in return for our money and since measuring amounts of stuff involves an incertitude about the size of the error and so, in our specification, we have to put a cap on the size of the error we are willing to tolerate, say "0.02 quarts of milk".

EXAMPLE 0.15. We cannot specify a distance in light years with a tolerance in inches.

But, if rather unfortunately,

LANGUAGE 0.4 It is completely standard to write, as Gowers is quoted doing in Subsection 1.3 - Whole numbers vs. decimal numbers (Page 5)

$$
x=x_{0} \pm T
$$

that is that the measured number is equal to the required number \pm the tolerance which, strictly speaking, makes no sense!

EXAMPLE 0.16. Strictly speaking, it makes no sense to specify $+3.14 \pm$ 0.02 because that would specify $+3.14 \oplus+0.02$, that is +3.16 , or $+3.14 \oplus$ -0.02 , that is +3.12 .

What is being specified by $+3.14 \pm 0.02$ is a required +3.14 with an error less than the tolerance 0.02 , in other words any number between +3.12 and +3.16

CaUtion 0.3 - (Page 10) can then be restated in a more constructive manner:

CAUTION 0.3 (Restated) A required number together with a tolerance will specify an amount of stuff.

Of course, not all errors have the same relevance to the real world situation.

EXAMPLE 0.17. An error of less than $\$ 5.00$ is devastating if the required number is $\$ 13.27$ but complêtely insignificant if the required number is $\$ 1018000008$.
In other words, while the difference between $\$ 8.27$ and $\$ 18.27$ is the same as the difference between $\$ 1017999$ 995. and $\$ 1018000005$. . namely $\$ 10$., a tolerance of $\$ 10$. is devastating if the required number is $\$ 13.27$ but complêtely insignificant if the required number is $\$ 1018000000$..
4. Variables. In order to deal with issues before a number has been given, $R B C$ could of course just leave the space empty to be eventually filled by the user with their given number.

EXAMPLE 0.18. The sentence at the beginning of Example 0.16 (Page 10) could have been obtained from:

Instead of an empty space, though, $R B C$ will employ the standard way which is to temporarily occupy the space with a variable, that is with a symbol that does not denote any particular number but acts as a placeholder eventually to be replaced by the user with a given number.
(https://en.wikipedia.org/wiki/Variable_(mathematics))

Or by RBC with a generic given number.

EXAMPLE 0.18. (Continued) Instead, RBC would employ a variable, say x, and write
variable place
global variable
x
y
z
semi-global variable
$x_{\text {pos }}$
ypos
Er, so the meaning of vari-
$a b l e s$
$x_{\text {neg }}$
$y_{\text {neg }}$
$z_{\text {neg }}$
global expression

Replace x by 702.36 in
The circumference of a circle with diameter x is equal to $3.14159 \times x$

LANGUAGE 0.5 The calculus word variable is a noun but the ordinary English word variable is a adjective saying that something can vary and therefore entails the existence of various possibilities.

EXAMPLE 0.19. When the Weather Forecast is that tomorrow's weather is going to be "variable", they mean that the weather is not going to remain the same throughout the day.

Place-holder would of course be much more intuitive than variable but variable is historically entranched and absolutely untouchable.

Because numbers can occur in different ways, $R B C$ will employ different $k i n d s$ of variables which will be introduced later, as needed.

The first kind of variable $R B C$ will employ will be:

DEFINITION 0.2 The global variables are the place-holding symbols $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} which can be replaced by any given number.

We will also occasionally use

DEFINITION 0.3 The semi-global variables are the place-holding

 symbols- $\boldsymbol{x}_{\text {pos }} \boldsymbol{y}_{\text {pos }}, \boldsymbol{z}_{\text {pos }}$ which can be replaced by any given positive number,
- $\boldsymbol{x}_{\text {neg }}, \boldsymbol{y}_{\text {neg }}, \boldsymbol{z}_{\text {neg }}$ which can be replaced by any given negative number.

4 Expressions And Values

Just like Arithmetic, the very heart of Calculus will involve creating other numbers from given numbers but the way the other numbers will be created is more complicated.

1. Global expressions. A global expressions in terms of a global variable is a (grammatically correct) assemblages of symbols with at least one oc-
curence of a global variable but without any calculus verb such as $=,<, \geqq$, ...

For a reason that will appear in Relations Given By Data-sets, $R B C$ will show global expressions against a green background with the variable against a pink background.

EXAMPLE 0.20.

- $-17.03 \odot x$ is a global expression in terms of x,
- $+2.73 \ominus-58.82$ is not a global expression because there is no variable,
- $-0.0021 \oplus y \otimes-5.01$ is a global expression in terms of y,

- $-0.0021 \oplus y<-5.01$ is not a global expression because of the verb $<$.

CAUTION 0.4 There are many different definitions of what a global expression is depending on the branch of mathematics and/or on the author's focus ${ }^{a}$
${ }^{a}$ https://en.wikipedia.org/wiki/Expression_(mathematics)
2. Individual expressions. Of course, what the user will want is to get an individual expression for a given number which is done by replacing the global variable in the global expression by the given number.

Example 0.20. (Continued)

- $-17.03 \odot-73.042$ is an individual expression for -73.042 ,
- $+2.73 \ominus-58.82$ is not an individual expression because there was no variable,
- $-0.0021 \oplus y_{2} \otimes-5.01$ is an individual expression in terms of y_{2},
- $\frac{-5.008^{+2} \ominus+7}{-5.008 \oplus+3}$ is an individual expression in terms of -5.008
- $-0.0021 \oplus+172.444<-5.01$ is not an individual expression because of the verb $<$.

In standard Calculus texts, this is done in one quick single step but to keep things clear $R B C$ will use:

Procedure 0.1 To get from a global expression in terms of a global variable an individual expression in terms of a given number
a. Declare the given number by writing to the right of the

> global expression in terms of global variable
the declaration
global variable to be replaced by given number
Altogether, then, we have:
global expression in terms of global variable global variable to be replaced by given number
b. Execute the declaration, that is replace in the global expression every occurence of the global variable by the given number. We thus get the individual expression for the given number :

> individual expression in terms of the given number

Demo 0.1 Get from $\frac{x^{+2} \ominus+7}{x \oplus+3}$ the individual expression for +5
a. We declare +5 by writing to the right of

$$
\frac{x^{+2} \ominus+7}{x \oplus+3}
$$

the declaration

$$
\left.\right|_{x \leftarrow+5}
$$

Altogether, then, we have:

$$
\frac{x^{+2} \ominus+7}{x \oplus+3}
$$

$$
x \leftarrow+5
$$

b. We execute the declaration by replacing every occurence of the global variable x in the global expression by the given number +5 . We thus
get the individual expression for the given number +5 :

Keep in mind, though, that other than in Examples and Demos, $R B C$ will have to employ generic given numbers and that $R B C$ will thus get generic individual expressions.

EXAMPLE 0.20. (Continued) With the generic given number y_{2}

- $-0.0021 \oplus y_{2} \otimes-5.01$ is a generic individual expression in terms of y_{2}
,

Agreement 0.3 The adjective generic in generic individual statement will go without saying.
3. Evaluation $\boldsymbol{A T}$ a given number. To evaluate a global expression $\boldsymbol{A T}$ a given number, that is to get the numerical value of the individual expression for the given number, $R B C$ will employ:

Procedure 0.2 To evaluate a global expression in terms of x
$A T$ a given number x_{0} :

The first two steps are to Get an individual expression from a global expression while the third step is computational:
a. Declare the given number x_{0} by writing the declaration
$\left.\right|_{x \leftarrow x_{0}}$, read " x to be replaced by x_{0} ",
to the right of the global expression:

b. Execute the declaration by replacing every occurence of the global variable x in the global expression by the given number x_{0} to get the individual expression for the given number x_{0} :
c. Try to carry out the computations in the individual expression in terms of x_{0}
generic individual expression
evaluate
AT
numerical value

Demo 0.2a Evaluate
 $$
\frac{x^{+2} \ominus+7}{x \oplus+3} A T+5
$$

a. We declare the given number +5 by writing the declaration $\left.\right|_{x \leftarrow+5}$, read " x to be replaced by +5 ", to the right of the global expression:

$$
\left.\frac{x^{+2} \ominus+7}{x \oplus+3}\right|_{x \leftarrow+5}
$$

b. We execute the declaration by replacing every occurence of the global variable x in the global expression by the given number +5 to get the individual expression for the given number +5 :
$\frac{+5^{+2} \ominus+7}{+5 \oplus+3}$

c. We try to carry out the computations in $\frac{\frac{+5{ }^{+2} \ominus+7}{+5 \oplus+3}}{\frac{+25 \ominus+7}{+5 \oplus+3}}$| $\frac{+18}{+8}$ |
| :---: |
| +4.5 | :

So, the numerical value of $\frac{x^{+2} \ominus+7}{x \oplus+3} A T+5$ is +4.5

Unfortunatley, a global expression cannot necessarily always be evaluated $A t$ a given number because the computations cannot necessarily always be completed.

Demo 0.2b Evaluate the global expression

$$
\frac{x^{+2} \ominus+7}{x \oplus+3} \text { at }-3
$$

a. We declare the given number -3 by writing the declaration $\left.\right|_{x \leftarrow-3}$, read " x to be replaced by -3 ", to the right of the global expression:

b. We execute the declaration by replacing every occurence of the global variable x in the global expression by the given number -3 to get the individual expression for the given number -3 :
$\frac{-3^{+2} \ominus+7}{-3 \oplus+3}$
c. We try to carry out the computations in $\frac{\frac{-3^{+2} \ominus+7}{-3 \oplus+3}}{\frac{\frac{+9 \ominus+7}{0}}{\frac{+2}{0}}}$
but the computation comes to a halt before we get a numerical value because we cannot carry out the division.

And matters can easily turn out even more complicated. For instance:

Demo 0.2c Evaluate $\frac{x^{+2} \ominus+9}{x \oplus-3}$ at +3
a. We declare the given number +3 by writing the declaration $\left.\right|_{x \leftarrow+3}$, read " x to be replaced by +3 ",
to the right of the global expression:

b. We execute the declaration by replacing every occurence of the global variable x in the global expression by the given number +3 to get the individual expression for the given number +3 :
$\frac{+3^{+2} \ominus+9}{+3 \oplus-3}$
c. We try to carry out the computations in $\frac{\frac{+3{ }^{+2} \ominus+9}{+3 \oplus-3}}{\frac{+9 \ominus+9}{0}} \begin{gathered}\frac{0}{0}\end{gathered}$
but the computations come to a halt before yielding a numerical value because we cannot carry out the division.

5 Formulas And Sentences

In keeping with "the first way RBC claims to be different is the explicit attention being paid to matters of language"

1. Formulas. One thing that distinguishes the calculus language from ordinary English is that, as "one of the most influential figures of conputing science's founding generation, Edsger Dijkstra," once said, "A picture may be worth a thousand words, [but] a formula is worth a thousand pictures. ${ }^{21}$ and so:
i. While $R B C$ will deal only later with equations and inequationswhich are essentially formulas,
ii. The calculus word "sentence" needs to be introduced in a manner consistent with what precedes because explanatory texts are often circular.

EXAMPLE 0.21. "In mathematics, a formula generally refers to an equation relating one mathematical expression to another" ${ }^{a}$ but then "an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign $=" b$

[^33][^34]formula

Like a global expression, a formula is a (grammatically correct) assemblage of symbols with at least one occurence of at least one global variable but, unlike a global expression, with a calculus verb such as $=,<, \geqq, \ldots$.
(https://en.wikipedia.org/wiki/Well-formed_formula)

EXAMPLE 0.22.

- $-2.73 \ominus+13.22$ is not a formula,
- $-48.91 \geqq+33.1 \otimes x$ is a formula,
- $-1.0 \oplus+1.0=0$ is not a formula,
- $\frac{x^{+2} \ominus+7}{x \oplus+3}<0$ is a formula

Formulas and global expressions are of course closely related.
EXAMPLE 0.23. If the variable x refers to the diameter of a circle, then the global expression in terms of x

$3.14159 \times x$

refers to the circumference of the circle.
On the other hand, if the variable y refers to the circumference of a circle, then the formula

$$
y=3.14159 \times x
$$

relates the circumference with the diameter.
2. Sentences. Formulas are also what calculus sentences are constructed from. What complicates matters, though, is that, as will now be seen, there are completely different kinds of constructions which result in completely different kinds of sentences.

LANGUAGE 0.6 Unfortunately, the more or less standard words for these different kinds of sentences are not very evocative. (https://en.wikipedia.org/wiki/First-order_logic\# Metalogical_properties.)

So, $R B C$ will now introduce perfectly non-standard, but hopefully much more evocative, calculus words to denote these differently constructed kinds

You may want to look up an old, classic game, WFF 'N PROOF. See
(https://en. wikipedia. org/wiki/WFF_ ' N_{-}PROOF.) which, by now is at the National Museum of American History but still available here and there on the web.
numerical sentence proposition
universal sentence exisential sentence
of sentences together with Language Notes for the reader who wants to read more elsewhere.
https://en.wikipedia.org/wiki/Sentence_(mathematical_logic)
A. Numerical sentences. Very much as, when the variable in a global expression is replaced by a given number the result is an individual expression with a numerical value, when the variable(s) in a formula are all replaced by given number(s), the result is a numerical sentence with a truth value.

Example 0.24. In Example A. 2 (Page 227),

- $-48.91 \geqq+33.1 \otimes x$ is not a numerical sentence,
- $-1.0 \oplus+1.0 \neq 0$ is a (FALSE) numerical sentence,
- $\frac{x^{+2} \ominus+7}{x \oplus+3}<0$ is not a numerical sentence.

LANGUAGE 0.7 $R B C$ calls such sentences numerical sentences because numerical sentences are constructed from numbers but numerical sentences usually go under the word proposition which, however, is more general in that, for instance, "Socrates is a man" is a propo-sition-but obviously not a numerical sentence.
B. Universal sentences. A universal sentence constructed from a formula says that all the numerical sentences obtained by replacing the variable by a given number are TRUE.
We employ $\forall\ulcorner\neg$ with the formula written between \ulcorner and \urcorner and with the variable in the formula copied right after the symbol \forall.

EXAMPLE 0.25. To say that " +1 times any given number equals that number", we employ the formula

$$
+1 \odot x=x
$$

together with the symbol $\forall\ulcorner\quad$ to write the universal sentence

$$
\forall x\ulcorner+1 \odot x=x\urcorner
$$

which we read as:

$$
\text { For all } x,+1 \text { times } x \text { equals } x
$$

C. Existential sentences. An exisential sentence constructed from a formula says that at least one of the numerical sentences obtained by replacing the variable by a given number is TRUE.

We employ $\exists\urcorner$ with the formula written between \ulcorner and \urcorner and with the Zero variable in the formula copied right after the symbol \exists. non
EXAMPLE 0.26. To say that " -3.25 times some number equals ${ }^{\wedge}+54.77$ ", 0 we employ the formula

$$
-3.25 \odot x=+54.77
$$

together with the symbol $\exists\urcorner$ to write the existential sentence

$$
\exists x\ulcorner-3.25 \odot x=x\urcorner
$$

which we read as:
There exists at least one x such that -3.25 times x equals +54.77

6 Zero And Infinity

CAUTION 0.5 Somewhat unfortunately, the word 'zero' is employed in Mathematics for two very different things:

- Something number-like in which case $R B C$ will normally use symbols and, if the word is needed, will spell it 'Zero', with an uppercase ' Z '. Zero will be introduced and discussed in Subsection 6.2 Infinity (Page 24) just below.
- As a feature functions may or may not have in which case $R B C$ will spell it 'zero', with a lower-case ' z '.

1. Zero. Although totally and absolutely indispensable, already "the ancient Greeks [...] seemed unsure about the status of zero as a number ${ }^{22}$.

CaUtion 0.6 Mathematicians distinguish \mathbb{N}, the whole numbers including 0 , and \mathbb{N}^{*}, the whole numbers excluding 0 , AKA counting numbers, ${ }^{a}$
${ }^{a}$ https://en.wikipedia.org/wiki/Natural_number
A. Semantics. The semantic question about Zero is simply: as opposed to non-zero numbers, that is all numbers except Zero, exactly what does Zero denote in the real world?

When we first learned how to count, we always started with one, never with zero.

- Whether or not $\mathbf{0}$ is considered to be a whole number, there is no difficulty with $\mathbf{0}$ being whole number-like because, in the discrete aspect of

[^35]empty collection
0.
nothingness
the real world, there is no difficulty with collections with 0 item, that is with empty collections ${ }^{23}$.

EXAMPLE 0.27. After we have eaten the last apple in a basket, the basket is empty and there is 0 apple in the basket.

- The difficulty is with $\mathbf{0}$., that is with 0 as decimal number-like, because, on the continuous side of the real world, there is no such thing as nothingness and thus no such thing as a 0 . amount of stuff.

EXAMPLE 0.28.

- After we have drunk the last drop in a glass of milk, the glass is empty but needs to be washed because there still remains milk on the glass.
just as,
- There is no such thing as a perfect vacuum ${ }^{a}$.
- There is no such thing as an absolute zero temperature ${ }^{b}$
${ }^{a}$ https://en.wikipedia.org/wiki/Vacuum
${ }^{b}$ https://en.wikipedia.org/wiki/Absolute_zero
But, even though Zero does not denote any entity, if only for convenience we will have to accept that

CAUTION 0.7 Zero is a number, albeit a dangerous number, that can therefore be a given number.
Bfitoupkeyitrogsaing thoottheusigs oфrovindenterely moves the issue to plain numbers.
B. Syntactics What complicates matters with Zero is that, from the syntactic viewpoint, the role Zero plays is complicated:

- Zero is less than any positive number and more than any negative number.
- With addition and subraction, Zero has much to do with opposite numbers:
- Adding Zero to a number results in the same number and adding two opposite numbers results in Zero,
- Subtracting Zero from a number results in that same number x_{1} but subtracting a number from Zero results in the opposite number and subtracting a number from itself results in Zero.
- With multiplication, things are less satisfactory because, while:

[^36]Which we tend to take for granted.

- multiplying two numbers by a positive number keeps the way the two numbers compare, and that
- multiplying two numbers by a negative number fips the way the two numbers compare,
the danger is to forget that
- multiplying two numbers by zero destroys the way the two numbers compare because the result is Zero = Zero.
- But it's with division that things get really bad:
- Dividing Zero by any non-zero number results in Zero no matter what.

EXAMPLE 0.29. $0 \div 3=0$ because, when we share in the real-world 0 apples among 3 persons nobodybody gets any apple:

$$
\frac{0 \text { apple }}{3 \text { persons }}=\frac{3 \times 0 \text { apple }}{3 \times 1 \text { person }}=\frac{\not \partial \times 0 \text { apple }}{\not \supset \times 1 \text { person }}=\frac{0 \text { apple }}{1 \text { person }}=0 \text { apples } / \text { person }
$$

which we can check as follows
0 apples/person $\times 3$ persons $=\frac{0 \text { apple }}{1 \text { persort }} \times 3$ persons $=0$ apple $\times \frac{3}{1}=0$ apples
And, worst of all,

- Dividing a non-zero number by Zero just cannot be done.

EXAMPLE 0.30. When we divide 12 apples among 3 persons each person gets 4 apples and altogether we hand out 12 apples:
4 apples/person $\times 3$ persons $=\frac{4 \text { apples }}{1 \text { persort }} \times 3$ persons $=4$ apples $\times \frac{3}{1}=12$ apples but, we cannot divide 12 apples among 0 person because, whatever each person gets, ? apples/person, we can only hand out 0 apples:
$?$ apples/person $\times 0$ persons $=\frac{? \text { apples }}{1 \text { persom }} \times 0$ persons $=?$ apples $\times \frac{0}{1}=0$ apple
which, among other things, can prevent evaluating a global expression AT a given number.

Example 0.31. See step c. in Demo 0.2b (Page 16) and Demo 0.2c (Page 17)

Thus,
infinity
endless
end of the line
2. Infinity. Contrary to Zero, infinity is not necessary for ARITHMETIC but, as we will see, just as totally and absolutely indispensable for Calculus.

But, already way back, and a lot more than Zero, infinity has been a nightmare: "Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers." 24
A. Semantics The question about infinity is the same as with zero: what does infinity denote in the real world?
a. But with infinity, there is already a difficulty in the discrete aspect of the real world in that there is no such entity in the real world as a collection with an infinity of items.

EXAMPLE 0.32. There is no infinity of stars in the universe, only a hugely huge number of stars. Beyond our ability even to imagine, certainly, infinite, no.
And, yes, there is an infinity of whole numbers but whole numbers are not real world entities.
b. And, in the continuous aspect of the real world, things are much worse. As Leibniz said, "There are two labyrinths of the human mind: one concerns the composition of the continuum, and the other the nature of freedom, and both spring from the same source-the infinite."

To begin with, there is no such thing in the real world as an infinite amount of stuff.

EXAMPLE 0.33. The amount of energy in the universe is not infinite, only hugely huge. Beyond our ability even to imagine, yes, infinite, no.

And then, while it seems that, say, length of travel, could be endless, when we actually do try to go farther and farther away, even though we have the feeling that the longer we go, the farther away we will get, and that there is nothing to keep us from getting as far away as we want, ln the real world there is no such thing as endlessness in that, sooner or later, we get to the end of the line
B. Syntactics Here it is better not even to attempt calculating with infinity. But the curious reader might want to see Subsection 7.3-Extended numbers (Page 26).
3. Are ∞ and 0 reciprocal? Another reason for not computing with infinity is that,

[^37]- From the division table, we get that $\frac{x_{\mathrm{pos}}}{-\infty}=0^{-}$and therefore, in par- $\begin{aligned} & \text { upper end of the line } \\ & \text { lower end of the line }\end{aligned}$ ticular, that $\frac{+1}{-\infty}=0^{-}$so that, as would be expected, the reciprocal of $-\infty$ is 0^{-}and, similarly, we get that the reciprocal of $+\infty$ is 0^{+},
- However, from the multiplication table we get only that $-\infty \odot 0^{-}=+$? and that $+\infty \odot 0^{+}=+$?
While not contradictory, this would be annoying and, as we will see in Theorem 0.4 - Otiming qualitative sizes (Page 41), we will have a much more satisfying way to compute whether or not 0 and ∞ are reciprocal.

OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR

7 Compactifying Numbers

1. Numbers and zero. Zero corresponds to the origin of a ruler. But, inasmuch as there can be only so many digits in a signed decimal number, RBC will often employ

- $\mathbf{0}^{-}$as upper end of the line for negative decimal numbers
- 0^{+}as lower end of the line for positive decimal numbers

2. Numbers and infinity. Infinity corresponds to the ends of a ruler. But, inasmuch as there can be only so many digits in a signed decimal number, we will often use

- $-\infty$ as lower end of the line for negative decimal numbers.
- $+\infty$ as upper end of the line for positive decimal numbers

Here again, though, marks picturing "equidistant" numbers cannot themselves be "equidistant" and have to get closer and closer as the numbers get larger.

EXAMPLE 0.35.

3. Extended numbers. In fact, and while $R B C$ will not do so, it is even possible to compute, at least to an extent, with the extended numbers, that is with $0^{-}, 0^{-}$and $+\infty,-\infty$, together with the decimal numbers.

```
(https://en.wikipedia.org/wiki/Extended_real_number_line#Arithmetic_
operations)
```

\oplus	$-\infty$	$y_{\text {neg }}$	0^{-}	0^{+}	$y_{\text {pos }}$	$+\infty$
$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$?$
$x_{\text {neg }}$	$-\infty$	$z_{\text {neg }}$	$x_{\text {neg }}$	$x_{\text {neg }}$	$?$	$+\infty$
0^{-}	$-\infty$	$y_{\text {neg }}$	0^{-}	$0 ?$	$y_{\text {pos }}$	$+\infty$
0^{+}	$-\infty$	$y_{\text {neg }}$	$0^{?}$	0^{+}	$y_{\text {pos }}$	$+\infty$
$x_{\text {pos }}$	$-\infty$	$?$	$x_{\text {pos }}$	$x_{\text {pos }}$	$z_{\text {pos }}$	$+\infty$
$+\infty$	$?$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$

\ominus	$-\infty$	$y_{\text {neg }}$	0^{-}	0^{+}	$y_{\text {pos }}$	$+\infty$
$-\infty$	$?$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
$x_{\text {neg }}$	$+\infty$	$z_{?}$	$x_{\text {neg }}$	$x_{\text {neg }}$	$z_{\text {neg }}$	$-\infty$
0^{-}	$+\infty$	$y_{\text {pos }}$	$0^{?}$	0^{-}	$y_{\text {neg }}$	$-\infty$
0^{+}	$+\infty$	$y_{\text {pos }}$	0^{+}	$0^{?}$	$y_{\text {neg }}$	$-\infty$
$x_{\text {pos }}$	$+\infty$	$z_{\text {pos }}$	$x_{\text {pos }}$	$x_{\text {pos }}$	$z_{?}$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$?$

\odot	$-\infty$	$y_{\text {neg }}$	0^{-}	0^{+}	$y_{\text {pos }}$	$+\infty$
$-\infty$	$+\infty$	$+\infty$	$+?$	$-?$	$-\infty$	$-\infty$
$x_{\text {neg }}$	$+\infty$	$z_{\text {pos }}$	0^{+}	0^{-}	$z_{\text {neg }}$	$-\infty$
0^{-}	$+?$	0^{+}	0^{+}	0^{-}	0^{-}	$-?$
0^{+}	$-?$	0^{-}	0^{-}	0^{+}	0^{+}	$+?$
$x_{\text {pos }}$	$-\infty$	$z_{\text {neg }}$	0^{-}	0^{+}	$z_{\text {pos }}$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	$-?$	$+?$	$+\infty$	$+\infty$

two-point compactification

\odot	$-\infty$	$y_{\text {neg }}$	0^{-}	0^{+}	$y_{\text {pos }}$	$+\infty$
$-\infty$	$+?$	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$-?$
$x_{\text {neg }}$	$0_{\text {pos }}$	$z_{\text {pos }}$	$+\infty$	$-\infty$	$z_{\text {neg }}$	$0_{\text {neg }}$
0^{-}	0^{+}	0^{+}	$+?$	$-?$	0^{-}	0^{-}
0^{+}	0^{-}	0^{-}	$-?$	$+?$	0^{+}	0^{+}
$x_{\text {pos }}$	0^{-}	$z_{\text {neg }}$	$-\infty$	$+\infty$	$z_{\text {pos }}$	0^{+}
$+\infty$	$-?$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$+?$

One reason we will not compute with extended numbers is of course the yellow boxes in the above operation tables.
4. Compactifications. ${ }^{25}$ What shape is the real world is a very serious question in Astrophysics. (https://www.quantamagazine.org/ what-is-the-geometry-of-the-universe-20200316/.)

1. If the real world is flat, this means that the numbers are pictured by rulers. But then, there may or may not be an end of the line to rulers. If there is, then the extended numbers that is the numbers together with $+\infty,-\infty$ as well as $0^{-}, 0^{-}$make up what is called a two-point compactification of the signed decimal numbers.
2. On the other hand, if the real world is not flat, there may be no end of the line and, after a long journey, we may find ourselves back to where we started. (https://www.quantamagazine.org/what-shape-is-the-universe-closed-or-flat-20191104

EXAMPLE 0.36. Even though Magellan died in 1521 while trying to go as far away from Seville as he could ${ }^{26}$, his ships kept on going west.

[^38]Magellan circle
one-point compactification origin

Bearing witness that there was no going around the fact that the earth is round.

And one of his ships eventually reached ... home.
https://en.wikipedia.org/wiki/Ferdinand_Magellan\#Voyage
(https://www.cantorsparadise.com/two-compactification-theorems-6a73b11ea908)
In that case, since what looks to us like a straight line is in the real world just a piece of a Magellan circle, instead of rulers we will often employ one-point compactifications of the numbers, that is Magellan circles that include ∞, "down under" from the origin, together with the numbers.
origin, as end of the line. together with the numbers

Of course, marks picturing "equidistant" numbers cannot themselves be "equidistant" and have to get closer and closer as the numbers get larger:

Another way to look at this is to imagine bending the extremities of the ruler, while shrinking the ends more and more, until they meet. (https:

```
//en.wikipedia.org/wiki/Projectively_extended_real_line)
```


8 Size Of Numbers

While the ordinary English verbs, is-larger-than, is-smaller-than, and $i s$-the-same-as, all take the sign as well as the size into account just like the corresponding calculus verbs, is-more-than, is-less-than is-equal-to, the ordinary English adjectives, large, small and medium refer only to the size and not to the sign.

EXAMPLE 0.37. Essentially all dictionaries define large as "bigger than usual in size":

- "exceeding most other things of like kind especially in quantity or size"a
- "of greater than average size" b "of more than average size" c
- "of more than average size" ${ }^{d}$
- "greater in size than usual or average" e
- "Of considerable size or extent; great, big. Designating a quantity, amount, measure, etc., of relatively great magnitude or extent." f

```
"}\mathrm{ https://www.merriam-webster.com/dictionary/large
b}\mathrm{ https://www.thefreedictionary.com/Large
chttps://www.dictionary.com/browse/large
d}\mathrm{ https://www.dictionary.com/browse/large
e}https://www.collinsdictionary.com/dictionary/english/large
fhttps://www.oed.com/search/dictionary/?scope=Entries&q=large
```

1. Size-comparing signed numbers. In order to define calculus adjectives that correspond to the ordinary English adjectives, large, small and
size-comparie
smaller-size
larger-size equal-in-size
medium, it will be convenient to define size-comparing which is comparing in terms of only the sizes of the signed numbers and ignoring the signs:

Definition 0.4 Given two signed numbers x and y,

- x is smaller-size than y iff Size $x<\operatorname{Size} y$,
- x is larger-size than y iff Size $x>$ Size y,
- x is equal-size to y iff $\operatorname{Size} x=\operatorname{Size} y$, (So, iff $\quad x$ and y are either equal or opposite.)

EXAMPLE 0.38. To size-compare -254.7 and-32.6:
Since:
The size of -254.7 is 254.7 and the size of +32.6 is 32.6 , and since

$$
254.7>32.6
$$

then

$$
\text { The size of }-254.7>\text { the size of }+32.6
$$

In other words, i
-254.7 is larger-size than +32.6 ,
even though -234.7 is smaller than +32.6
EXAMPLE 0.39. To size-compare +71.44 and -128.52 :
Since
the size of +0.7 is 0.7 and the size of -128.52 is 128.52
and since
71.44 is smaller than 128.52
then

$$
\text { The size of }+71.44 \text { is smaller than the size of }-128.52
$$

that is

$$
+71.44 \text { is smaller-size than }-128.52
$$

even though +71.44 is larger than -128.52
EXAMPLE 0.40. To size-compare -0.7 and +0.7 :
Since
the size of -0.7 is 0.7 and the size of +0.7 is 0.7 ,
and since
0.7 is equal to 0.7
then

$$
\text { The size of }-0.7 \text { is equal to the size of }+0.7
$$

that is

```
    -0.7 is equal-size to }+0.7\mathrm{ ,
even though -0.7 is smaller than +0.7
```

CAUTION 0.8 There are no symbols for size-comparisons of numbers.

In fact, because size-comparing is not standard, size-comparing is invariably confused with comparing sizes but:

CAUTION 0.9 Given two signed number-phrases,

- Comparing the number-phrases results in a statement about the numerators
while
- Size-comparing the number-phrases results in a statement about the denominators.

EXAMPLE 0.41. Let Dick be 13 and Jane be 18 .
Then,

- Comparing the ages of Dick and Jane is talking about the ages of Dick and Jane that is talking about numbers namely: " $13<18$ ",
- Age-comparing Dick and Jane is talking about Dick and Jane themselves that is talking about people namely: "Dick is younger than Jane".

EXAMPLE 0.42. Let Dick be worth $+13,000$ Dollars and Jane be worth $-128,000,000$ Dollars.
Then,

- Comparing the worths of Dick and Jane, that is comparing $+13,000$ and $-128,000,000$ which shows that Dick is richer than Jane,
but
- Size-comparing the worths of Dick and Jane, that is comparing 13, 000 and $128,000,000$ which shows that Dick is a lot less important a person than Jane is.

When picturing size-comparisons of two given numbers

- The smaller-size number is closer to 0 than the larger-size number,
- The larger-size number is farther from 0 than the smaller-size number.

EXAMPLE 0.43. Given the numbers -7.5 and +3.2 , we saw in ExAmPLE 1.9 (Page 73) that

- -7.5 is larger-size-than +3.2 ,
and therefore that
- +3.2 is smaller-size-than -7.5 ,

After picturing -7.5 and +3.2

we see that

- -7.5 is farther from 0 than +3.2 ,
- +3.2 is closer from 0 than -7.5 ,

In particular:

THEOREM 0.1 Sizes of reciprocal numbers:

- The larger-size a non-zero number is, the smaller-size its reciprocal, and
- The smaller-size a non-zero number is, the larger-size its reciprocal.

Getting there, eh?

Proof. zzzzz

But, even though we all have an intuitive idea of what the ordinary English words large, small and medium mean, the numbers to which the adjectives large, small and medium apply are not necessarily the same in all situations.

EXAMPLE 0.44. Nobody likes to work for a small amount of money but

Of course, in some parts of the real world, even a dollar an hour is actually a large amount of money. while billionaires would say a thousand dollars an hour is way too small to even dream of, the rest of us would probably think a hundred dollars an hour large enough.
2. Giveable numbers. We can of course give any signed decimal number we want but there are unbelievably many numbers that are unbelievably larger-size than any number you care to imagine as well as unbelievably many numbers that are unbelievably smaller-size than any number you care to imagine:

- We all went through a stage as children when we would count, say, "one, two, three, twelve, seven, fourteen, ..." but soon after that we were able to count properly and then we discovered that there was no largest number: we could always count one more. (Of course, counting backwards into the negative numbers has no end either so there is no largest-size number.) But that was only the tip of the iceberg.

EXAMPLE 0.45. Start with, say -73.8 , and keep multiplying by 10 by moving the decimal point to the right, inserting 0 s left of the decimal point when it becomes necessary

$$
-73.8
$$

-738.
-7380.
-73800.
-738000.
-7380000.
-738000000000000000000000000000000 .
This last number is probably already a lot larger-size than any number you are likely to have ever encountered.

If not, just keep inserting os until you get there!
(See https://en.wikipedia.org/wiki/Large_numbers\#Large_numbers_ in_the_everyday_world)

- On the other hand, as children knowing only plain whole numbers, we thought there was no number smaller than 1 or perhaps than 0 . With decimal numbers, though, there is no smallest-size number.

EXAMPLE 0.46. Start with, say 41.6, and keep dividing by 10 by moving the decimal point to the left, inserting 0 s right of the decimal point when it becomes necessary.
size-range
41.6
4.16
0.416
0.0416
0.00416
0.000416
0.0000416
0.00000416
\cdots

$$
0.00000000000000000000000000000000000000416
$$

If not, keep inserting Os until you get there!

Which is one reason why scientists and engineers employ metric units of stuff: the conversion of metric units of stuff is easy because it involves only moving the decimal point without changing the digits. Scientists work hard enough not to bother with inconvenient units of stuff but many engineers in this country often have to use the US Customary System.

This last number is probably already a lot smaller-size than any number you are likely to have ever encountered in a real world situation.

What numbers scientists and engineers use, though, fall into size-ranges that depend on the situation.

EXAMPLE 0.47. The numbers that astrophysicists ${ }^{a}$ give and the numbers that nanophysicists ${ }^{b}$ give definitely fall into entirely different size-ranges.

```
\({ }^{a}\) https://en.wikipedia.org/wiki/Astrophysics
\({ }^{b}\) https://en.wikipedia.org/wiki/nanophysicist
```

In this regard, the following, all about distances-which are sizes, are well worth looking up:

- The 9 minutes 1977 classic video by Charles Eames ${ }^{a}$
- The presentation by Terence Tao (Fields Medal 2006) ${ }^{b}$.

[^39]Of course, units of stuff of the appropriate size allow us to use numbers in whatever size-range is convenient-

EXAMPLE 0.48. In the US Customary System,

- Instead of talking about 38016 inches, we usually say 0.6 miles,
- Instead of talking about 0.01725 tons, we usually say 34.5 pounds.
while, in the Metric System,
- Instead of talking about $\$ 3370000$., we usually say 3.37 MegaDollars.
- Instead of talking about 0.0000074 Meters, we usually say 7.4 microMeters.

Since +1.0 unit and -1.0 unit are most likely to be in any range,
Agreement 0.4 As far as $R B C$ will be concerned, +1.0 and -1.0 will always be within the size-range.

By the same token, when we use numbers, for scientists and engineers," in any real world situation there will be numbers out-of-range, that is numbers that we will not use.

EXAMPLE 0.49. Numbers like
out-of-range
cutoff-size
upper cutoff-size lower cutoff-size negative range positive range negative upper cutoff-number negative lower cutoff-number positive upper cutoff-number
a. -7000 sitive lower 00 cutoff-number 00 .
or
b. -0.000

00
003
are not very likely to be within any range.
So, in the real world there always are two cutoff-sizes that determine the size-range:

- An upper cutoff-size above which numbers will surely not designate anything in the situation,
- A lower cutoff-size below which numbers will surely not designate anything in the situation.

Unfortunately, often left to go without saying.

In practice, though, it is more convenient to distinguish the negative range from the positive range and, instead of cutoff-sizes, employ:

- Negative upper cutoff-number
- Negative lower cutoff-number
- Positive upper cutoff-number
- Positive lower cutoff-number

Of course, the cutoff-sizes will depend on the real world situations.

EXAMPLE 0.50. Some rulers show $1 / 32$ inch, some tape measure show

EXAMPLE 0.51. A small business could take 100000.00 and 0.01 as cutoff sizes for their accounting system as it probably would never have to deal with amounts such as $\$-1058436.39$ or $\underset{\text { Size }}{\$+0.00072 \text {. }}$

In contrast, the accounting system for a multinational corporation would certainly employ different cutoff-sizes, maybe something like:

So, given a size-range, the numbers that the user can give are:

DEFINITION 0.5 Finite numbers ${ }^{a}$ are numbers that are in the size-range that is both
smaller-size-than the upper cutoff-size
and
larger-size-han the lower cutoff size

[^40]Both +1 and -1 are finite numbers since +1 and -1 correspond to units of stuff.

THEOREM 0.2 Finite numbers are non-zero numbers.(But
non-zero numbers are not necessarily finite numbers.)

Proof. Acording to ?? ?? - ?? (??) and as the represent illustrates, - The upper cutoff-size keeps finite numbers away from $-\infty$ and $+\infty$.

- The lower cutoff-size keeps finite numbers away from 0^{-}and 0^{+}.

AGREEMENT B. 1 (Restated) 'Number' (without qualifier)

Finite number will be short for reasonable signed decimal numbers in the given size-range
$R B C$ will employ the generic given number symbols $x_{0}, x_{1}, x_{2}, \ldots$ as variable for finite numbers.
3. Off-range numbers. While off-range numbers cannot be finite numbers, off-range numbers actually play a big role in Calculus and $R C B$ will employ the following names for off-range numbers:
A. Infinitesimal numbers. The numbers whose size is too small for the numbers to be giveable will be referred to in $R B C$ as:

DEFINITION 0.6 Given a size-range, infinitesimal numbers ${ }^{a}$ are numbers that are smaller-size than the lower cutoff-size

$$
{ }^{{ }^{a} \text { https://en.wikipedia.org/wiki/Infinitesimal }}
$$

Definition 0.7 The small variables $\boldsymbol{h}, \boldsymbol{k}, \ldots$ will be the (standard) symbols for infinitesimal numbers.
near-zero number
infinite number
large variable
L
M
infinite number near-infinity number

CAUTION $\mathbf{0 . 1 0}$ because 0 has no size to begin with. (?? ?? - ?? (??))

Also known as near-zero numbers.
B. Infinite numbers. The numbers whose size is too large for the numbers to be giveable will be referred to in $R B C$ as:

DEFINITION 0.8 Infinite numbers ${ }^{a}$ are numbers that are larger-size than the upper cutoff-size

${ }^{a}$ https://www.dictionary.com/browse/infinite)

DEfinition 0.9 The large variables L, M, \ldots will be the (standard) symbols for infinite numbers.

CaUtion 0.11∞ is not a number to begin with. (Caution 0.2 No other number (Page 5))

Infinite as in out of bound. But then so is zero.

Also known as near-infinity numbers .
$============\overline{==}====$
$===================1$
While the variables x, y, z can stand for numbers of any qualitative sizes,

Altogether, then, these qualitative sizes are illustrated by:

REWRITE ALL THIS SECTION USING h and L
In Arithmetic, we calculate in exactly the same way with all signed decimal numbers), regardless of their size.

EXAMPLE 0.52. +0.3642 and -105.71 are added, subtracted, multiplied and divided by exactly the same rules as -41008333836092.017 and -0.000001607 .
$======$ Begin WORK ZONE======
While 0 does not exist in the real world, infinitesimal numbers do exist in the real world
h^{n}
So, while $5 \odot 0$ does not exist in the real world so that we do not want to write $5 \odot 0=\infty$, infinitesimal number does exist in the real world and there is no problem writing $5 \odot h=L /$ Users/alainschremmer/Desktop/untitled folder infinitesimal number \odot infinitesimal number

$========$ End WORK ZONE======

For calculating purposes, qualitative sizes make up a rather crude system because qualitative sizes carry no information whatsoever about where the cutoffs are.

Nevertheless, as we will see, the calculations we can do with qualitative sizes will be plenty enough to help us simplify calculations by separating what is qualitatively the right size to be relevant to what we are interested in from what is qualitatively the wrong size and therefore irrelevant to what we are interested in.

We will now discuss to what extent we can calculate with numbers of which all we know is their qualitative size: infinite, or infinitesimal, or medium-size.

In each case, it is most important that you develop a good feeling for what is happening and so it is important for you to experiment by setting cutoff-sizes and then picking numbers with the qualitative sizes you want. A good rule of thumb for picking:

And if you're worried about rigor, you'll be glad to know qualitative sizes lead straight to Bachmann-Landau's little o's and big O 's (https:
// en. wikipedia. org/ wiki/Big_ O_notation).

You don't need extreme cutoff-sizes but do pick your numbers far from the cutoffs.
undetermined

- medium-size numbers is to try ± 1,
- infinite numbers is to try ± 10.0 or ± 100.0 or ± 1000.0 etc
- infinitesimal numbers is to try ± 0.1 or ± 0.01 or ± 0.001 etc

4. Adding and subtracting qualitative sizes.

THEOREM 0.3 Oplussing qualitative sizes numbers

\oplus	near ∞	regular	near 0
near ∞	$?$	near ∞	near ∞
regular	near ∞	$?$	regular
near 0	near ∞	regular	near 0

In other words

\oplus	L	regular	h
near ∞	$?$	L	L
regular	L	$?$	regular
h	L	regular	h

Proof. i. The non-highlighted entries are as might be expected.
EXAMPLE 0.53. $-100000 \oplus+1000=-99000$

$$
-100000 \oplus-0.001=100000.001
$$

So, the reader is invited to decide on cutoff-sizes, experiment a bit, and then prove the non-highlighted entries using these cutoff-sizes.
ii. When the two infinite numbers have opposite signs, the addition is undetermined because the result could then be infinite, or infinitesimal, or medium-size, depending on "how much" infinite the two infinite numbers are compared to each other.

EXAMPLE 0.54. Here are two additions of infinite numbers whose results are different in qualitative sizes:
$+1000000000000.7 \oplus-1000000000.4=+999000000000.3$,
but

$$
-1000000000000.5 \oplus+1000000000000.2=-0.3 .
$$

```
\(=======\) Begin WORK ZONE=======
    Since \(\ominus=\oplus\) Opposite
\(=======\) End WORK ZONE \(========\)
```


5. Multiplying qualitative sizes.

THEOREM 0.4 Otiming qualitative sizes

\odot	infinite	medium-size	infinitesimal
infinite	infinite	infinite	$?$
medium-size	infinite	medium-size	infinitesimal
infinitesimal	$?$	infinitesimal	infinitesimal

The global symbols have different subscripts because, even when they have the same qualitative size, they stand for different numbers.

Proof. i. The non-highlighted entries are as might be expected.
EXAMPLE 0.55. $-10000 \odot-1000=+10000000$

$$
+0.01 \odot-0.001=-0.00001
$$

So, the reader is invited to decide on cutoff-sizes, experiment a bit, and then prove the non-highlighted entries using these cutoff-sizes.
ii. infinite \odot infinitesimal is undetermined because the result could be infinite, or infinitesimal, or medium-size, depending on "how much infinite" infinite is compared to "how much infinitesimal" infinitesimal is.

EXAMPLE 0.56. Here are different instances of infinite \odot infinitesimal that result in different qualitative sizes:

$$
\begin{array}{l|l}
-1000 \odot-0.1=+100 & -100000000 \odot-0.00001=+100 \\
+1000 \odot-0.001=-1 & +1000000 \odot-0.00001=-1 \\
+1000 \odot+0.00001=+0.01 & +1000 \odot+0.00001=+0.01
\end{array}
$$

Similarly for infinitesimal \odot infinite.

6. Dividing qualitative sizes.

THEOREM 0.5 Odividing qualitative sizes

	infinite	medium-size	infinitesimal
infinite	$?$	infinite	infinite
medium-size	infinitesimal	medium-size	infinite
infinitesimal	infinitesimal	infinitesimal	$?$

The global symbols have different subscripts because, even when they have the same qualitative size, they stand for different numbers.

Proof. i. The non-highlighted entries are as might be expected.

EXAMPLE 0.57. $\frac{-10000000}{+50}=-200000$

$$
\frac{+0.03}{+6000000}=+0.000000005
$$

So, the reader is invited to decide on cutoff-sizes, experiment a bit, and then prove the non-highlighted entries using these cutoff-sizes.
ii. $\frac{\text { infinite }}{\text { infinite }}$ is undetermined because the result could be infinite, or infinitesimal, or medium-size, depending on "how much infinite" infinite and infinite are compared to each other..

EXAMPLE 0.58. Here are three instances of $\frac{\text { infinite }}{\text { infinite }}$ that result in different qualitative sizes:
$\frac{-1000000}{-1000}=+1000, \quad \frac{-1000000}{-100000}=-10, \quad \frac{-100000}{-1000000000}=+0.0001$.

And $\frac{\text { infinitesimal }}{\text { infinitesimal }}$ is similarly undetermined.

EXAMPLE 0.59. Here are three instances of infinitesimal \odot infinitesimal that result in different qualitative size:

$$
-0.001 \odot+0.1=-0.01,+0.001 \odot+0.001=+1,-0.01 \odot-0.001=+10
$$

7. Reciprocal of a qualitative size. We really would like the reciprocal of a infinitesimal number to be a infinite number and, the other way round, the reciprocal of a infinite number to be a infinitesimal number.
i. Unfortunately, because we defined qualitative sizes in terms of cutoff-sizes which we decide independently of each other, this is not necessarily the case and the reciprocal of a infinitesimal number need not be a infinite number and, the other way round, the reciprocal of a infinite number need not be a infinitesimal number because the upper cutoff-size and the lower cutoff-size are not necessarily reciprocal of each other.

EXAMPLE 0.60. The following cutoff-sizes are probably suitable for the accounting system of a small business:

i. +0.009 is below the positive lower cutoff $(+0.009<+0.01=+0.010)$ and is therefore a infinitesimal number,
ii. The reciprocal of +0.009 is +111.1 (Use a calculator.)
iii. +111.1 is below the positive upper cutoff and is therefore not a infinite number.
ii. Fortunately, it is always possible to take the cutoff-sizes so that

- the upper cutoff-size is the reciprocal of the lower cutoff-size and, the other way round,
- the lower cutoff-size is the reciprocal of the upper cutoff-size
because all that will happen is that with the adjusted cutoff-sizes there will now be more numbers that will be medium-size than is really needed.

EXAMPLE 0.61. We can change the lower cutoff-size in ?? (??) to 0.000001 :

so that now the lower cutoffs and the upper cutoffs are reciprocal of each other:
i. +0.0009 is below the positive lower cutoff $(+0.0009<+0.001=+0.0010)$ and is therefore a infinitesimal number,
ii. The reciprocal of +0.0009 is +1111.1 (Use a calculator.)
iii. +1111.1 is above the positive upper cutoff and is therefore a infinite number.
The price is just thatnumbers whose size is between 0.01 and 0.000001 will now also be medium-size-but most probably will never be used.
iii. So then, from now on,

Agreement 0.5 The lower cutoff-size and the upper cutoff-size will be reciprocal of each other.
iv. We then have:

THEOREM 0.6 Reciprocity of qualitative sizes

- Reciprocal of infinite number $=\frac{+1}{\text { infinite number }}$

$$
=\text { infinitesimal number }
$$

- \quad Reciprocal of infinitesimal number $=\frac{+1}{\text { infinitesimal number }}$

$$
=\text { infinite number }
$$

- Reciprocal of medium-size number $=\frac{+1}{\text { medium-size number }}$

$$
=\text { medium-size number }
$$

Proof.

- If a given number is infinite,
- By Definition 0.4 - Size-comparison (Page 30), the given number is larger-size than the upper cutoff-size
- By Theorem A. 1 - Opposite numbers add to 0: (Page 227), the reciprocal of the given number is then smaller-size than the reciprocal of the upper cutoff-size.
- But by Agreement A. 1 - Computable expressions (Page 228), the reciprocal of the upper cutoff-size is the lower cutoff-size.
- So, the reciprocal of the given number is smaller-size than the lower cutoff-size.
- And so, by Definition 0.4 - Size-comparison (Page 30), the reciprocal of the given infinite number is a infinitesimal number
- The reader is invited to make the case for the reciprocal of a infinitesimal given.
- The reader is invited to make the case for the reciprocal of a mediumsizegiven number that is medum-size

9 Neighborhoods - Local Expressions

This is where Calculus parts away from Discrete Mathematics .

1. Points. In spite of ?? ?? - ?? (??) and Caution 0.2 - No other number (Page 5), and because, for all their differences, we will be using 0 , ∞, and non-zero numbers pretty much in the same way, it will be extremely convenient to employ a word to stand for any of 0 or ∞ as well as for x_{0} :

DEFINITION 0.10By point, we will mean any of the following:

- Any non-zero number,
- 0, (Even though 0 has no sign.)
- ∞. (Even though ∞ is not a number.)

Thus, a given point can be 0 as well as a non-zero number but can also be ∞.

In particular, it will be extremely convenient to see the points ∞ and 0 as points that are reciprocal of each other.

Nevertheless:
CAUTION 0.12 One cannot compute with points because the rules for computing with non-zero numbers and with 0 are different and we cannot compute with ∞ very much at all.
2. Nearby numbers. Evaluating a global expression at a point, though, is to ignore the real world and, in fact, since, as we will see in ?? ?? - ?? (??), CAlculus deals with 'change', instead of wanting to investigate what happens $A t$ a given point, we will investigate what happens At nearby numbers.

Example 0.62. As opposed to Example A. 2 (Page 227), we can tell a car is moving from a movie, that is from still pictures during a short time span.

More precisely:
i. As we saw in Section 2 - Issues With Decimal Numbers (Page 6), nothingness does not exist in the real world,

EXAMPLE 0.63. We employ 0 quart of milk to designate the amount of milk that appears to be in an empty bottle but it might just be that the amount of milk in the bottle is just too small for us to see.

So, in accordance with the real world, we will employ nearby numbers that is, in this case, numbers near 0 , that is infinitesimal numbers,

point

 nearby number near 0near ∞
neighborhood
thicken
center

EXAMPLE 0.64. -0.002 .078 and +0.000 .928 are both near 0 .
ii. As we saw in Section 3 - Giving Numbers (Page 8), infinity does not exist in the real world,

EXAMPLE 0.65. We may say that the number of molecules in a spoonful of milk is infinite, but of course it's just that the number of molecules is too large for us to count under a microscope.

So, in accordance with the real world, we will employ nearby numbers, that is, in this case, numbers near ∞, that is infinite numbers,

EXAMPLE 0.66. -12729000307 and +647809010374 are both near ∞
iii. As we saw in ?? ?? - ?? (??), measured numbers will always differ from a given number x_{0} by some error

EXAMPLE 0.67. I can give you 3 apples but I cannot give you a 3 foot long stick as it will always be a bit too long or a bit too short.

So, in accordance with the real world, we will employ nearby numbers that is, in this case, numbers near x_{0}, that is numbers that differ from x_{0} by only infinitesimal numbers.

EXAMPLE 0.68. $-87.36 \oplus-0.000 .032=-87.360032$ and $-87.36 \oplus$ $+0.000 .164=-87.359836$ are both near -87.36

Actually, it is completely standard to speak of a

DEFINITION 0.11 Neighborhood of a point:

- A neighborhood of 0 consists of the numbers near 0 .
- A neighborhood of ∞ consists of the numbers near ∞,
- A neighborhood of x_{0} consists of the numbers near x_{0}.
(https://en.wikipedia.org/wiki/Neighbourhood_ (mathematics))

And, in fact, we will often speak of thickening a given point, that is we will be looking at that point as just the center of a neighborhood of that point.
3. Evaluation near a given point. In order to evaluate a global expression near a given point, we will evaluate the global expression $A t$ an indeterminate number near the given point. In other words:

- Instead of declaring 0 , we will declare the infinitesimal variable h,
- Instead of declaring ∞, we will declare the infinite variable L,
- Instead of declaring x_{0}, we will declare:

DEFINITION 0.12 The nearby variable $\boldsymbol{x}_{\boldsymbol{0}} \oplus \boldsymbol{h}$ is the (standard) symbols for numbers near x_{0}
"Nearby" because, since h is near $0, x_{0} \oplus h$ will be near x_{0}

In other words, we will employ Procedure 0.1 - Get an individual nearby is already used. expression from a global expression (Page 14) but with an indeterminate number instead of a given number.

```
Procedure 0.3 To evaluate a given
global expression in terms of x near a given point:
```

i. Declare an indeterminate numbers near the given point, that is:

- If the given point is 0 , declare the small variable h by writing the declaration $\left.\right|_{x \leftarrow h}$, read " x to be replaced by h ", to the right of the global expression:

global expression in terms of x

$$
x \leftarrow h
$$

- If the given point is ∞, declare the large variable L by writing the declaration $\left.\right|_{x \leftarrow L}$, read " x to be replaced by L ", to the right of the global expression:

$$
\text { global expression in terms of }\left.x\right|_{x \leftarrow L}
$$

- If the given point is x_{0}, declare the local variable $x_{0} \oplus h$ by writing the declaration $\left.\right|_{x \leftarrow x_{0} \oplus h}$, read " x to be replaced by $x_{0} \oplus h$ ", to the right of the global expression:

$$
\text { global expression in terms of }\left.x\right|_{x \leftarrow x_{0} \oplus h}
$$

ii. Replace every occurence of x in the global expression in terms of x by the declared variable to get the global expression for numbers near the given point :

- global expression in terms of h for numbers near 0
- global expression in terms of L for numbers near ∞
- global expression in terms of $x_{0} \oplus h$ for numbers near x_{0}
iii. Execute the general expression in terms of the declared variable according to the relevant rules in ?? ?? - ?? (??)

In contradistinction with ?? ?? - ?? (??), we have:

DEMO 0.3a To evaluate the global expression

$$
\frac{x^{+2} \ominus+7}{x \oplus+3} \text { near }+5
$$

i. We declare that the numbers are to be near +5 by writing the declaration $\left.\right|_{x \leftarrow+5 \oplus h}$, read " x to be replaced by $+5 \oplus h$ ", to the right of the global expression:

$$
\left.\frac{x^{+2} \ominus+7}{x \oplus+3}\right|_{x \leftarrow+5 \oplus h}
$$

ii. We replace every occurence of x in the global expression in terms of x by the local variable $+5 \oplus h$ to get the global expression for numbers near +5 :

$$
\frac{+5 \oplus h^{+2} \ominus+7}{+5 \oplus h \oplus+3}
$$

iii. We execute the global expression in terms of $+5 \oplus h$:
$\frac{+25 \oplus+10 h \oplus+h^{2} \ominus+7}{+5 \oplus+h \oplus+3}$
$\frac{+18 \oplus+10 h \oplus+h^{2}}{+8 \oplus+h}$

Since the division probably won't stop by itself and since where $R B C$ wiil stop the division will depend on the information we will want, the last expression just above is not an executed expression.

In contradistinction with ?? ?? - ?? (??), we have:
DEMO 0.3b To evaluate the global expression $\frac{x^{+2} \ominus+7}{x \oplus+3}$ near -3
i. We declare that the numbers are to be near -3 by writing the declaration $\left.\right|_{x \leftarrow-3 \oplus h}$, read " x to be replaced by $-3 \oplus h$ ", to the right of the global expression:
$\frac{x^{+2} \ominus+7}{x \oplus+3}$

$$
x \leftarrow-3 \oplus h
$$

ii. We replace every occurence of x in the global expression in terms of x by the local variable $-3 \oplus h$ to get the global expression for numbers near -3 :
$\frac{-3 \oplus h^{+2} \ominus+7}{-3 \oplus h \oplus+3}$
iii. We execute the global expression in terms of $-3 \oplus h$:
$\frac{+9 \oplus-6 h \oplus h^{2} \ominus+7}{-3 \oplus+3 \oplus h}$
$\frac{+2 \oplus-6 h \oplus h^{2}}{h}$
$+2 h^{-1} \oplus-6 \oplus h$

Since the division was by h, the last expression just above is an executed expression.

In contradistinction with ?? ?? - ?? (??), we have:
Demo 0.3c To evaluate the global expression $\frac{x^{+2} \ominus+9}{x \oplus-3}$ near +3
i. We declare that the numbers are to be near +3 by writing the declaration $\left.\right|_{x \leftarrow+3 \oplus h}$, read " x to be replaced by $+3 \oplus h$ ", to the right
of the global expression:

ii. We replace every occurence of x in the global expression in terms of x by the local variable $+3 \oplus h$ to get the global expression for numbers near +3 :

$$
\frac{+3 \oplus h^{+2} \ominus+9}{+3 \oplus h \oplus-3}
$$

iii. We execute the global expression in terms of $+3 \oplus h$:

Note that, here, the division being by h, we just did it and the expression just above is an executed expression.

And here is how it goes near ∞ :

Demo 0.3d To evaluate the global expression $\frac{x^{+2} \ominus+9}{x \oplus-3}$ near ∞
i. We declare that the numbers are to be near ∞ by writing the declaration $\left.\right|_{x \leftarrow L}$, read " x to be replaced by L ", to the right of the global expression:

$$
\left.\frac{x^{+2} \ominus+9}{x \ominus-3}\right|_{x \leftarrow L}
$$

ii. We replace every occurence of x in the global expression in terms of x by the local variable L to get the global expression for numbers
near ∞ :
$\frac{L^{+2} \ominus+9}{L \oplus-3}$
iii. We execute the global expression in terms of L :

The last expression just above is the executed expression.
4. Picturing a neighborhood of 0 . In ?? ?? - ?? (??), infinitesimal numbers were pictured with

which is not really a representation because the three qualitative sizes are represented at different scales. (https://en.wikipedia.org/wiki/Scale_ (represent)\#Large_scale,_medium_scale,_small_scale).
i. On a ruler, at just about any scale (https://en.wikipedia.org/wiki/ Scale_(represent)\#Large_scale,_medium_scale,_small_scale), the negative lower cutoff for medium-size numbers and the positive lower cutoff for medium-size numbers will both be on top of 0 and we won't be able to see infinitesimal numbers.
So, in order to see a neighborhood of 0 , we would need some kind of magnifier:
lnumber ine number line

The fact though, that, the neighborhood needs to be representd at a scale larger than the scale of the ruler creates a problem. One way out, of course, would be to draw the neighborhood of 0 just under the ruler:

ii. So, we cannot employ rulers and we will employ just a number line,

Can't employ the word number line because number lines are tickmarked like rulers.
hat is something like a ruler but without scale and therefore without tickmarks - not even for 0 - but with $-\infty$ and $+\infty$ as end of the line symbols in accordance with Agreement B. 1 - 'Number' (without qualifier) (Page 249):

we can draw a neighborhood of 0 as

5. Picturing a neighborhood of ∞. In Definition 0.5 - finite number (Page 36) infinite numbers were pictured with

which, again, is not a representation because the three qualitative sizes are compactor representd at different scales. (https://en.wikipedia.org/wiki/Scale_ (represent)\#Large_scale,_medium_scale,_small_scale)
i. On a quantitative ruler, at just about any scale, the negative upper cutoff for medium-size numbers and the positive upper cutoff for medium-size numbers will both be way off the represent so we would need some kind of compactor.
ii. In the spirit of one-point compactification, using a Magellan circle

on which infinite numbers are representped as

the advantage is that positive infinite numbers and negative infinite numbers are representped right next to each other the same way as positive infinitesimal numbers and negative infinitesimal numbers:

Nicely!
which represents infinite numbers as a neighborhood of ∞ just the way infinitesimal numbers make up a neighborhood of 0 .
iii. In the spirit of two-points compactification, we can also represent a neighborhood of ∞, that is infinite numbers, on a line as:

And, after all, 0 is the center Here, the advantage is that we are still facing 0 but the disadvantage is, of our neighborhood. as opposed to the Magellan represent, that positive infinite numbers and negative infinite numbers are separated from each other, the opposed way of positive infinitesimal numbers and negative infinitesimal numbers which are right next to each other:

This is often referred to as a Mercator represent. (https://en. wikipedia. org/wiki/Mercator_projection)
iv.
$========$ End WORK ZONE=======
6. Picturing a neighborhood of x_{0}. In ?? ?? - ?? (??) mediumsized numbers were pictured wirh

which, again, is not a represent because the three qualitative sizes are representd at different scales. (https://en.wikipedia.org/wiki/Scale_
side-neighborhoods left-neighborhood right-neighborhood

The situation with a neighborhood of x_{0} is similar to the situation with a neighborhood of 0 :
i. On a ruler, at just about any scale (https://en.wikipedia.org/wiki/ Scale_(represent)\#Large_scale,_medium_scale,_small_scale), the mediumsize numbers smaller than x_{0} and the medium-size numbers larger than x_{0} leave no room between them and we won't be able to see the numbers near x_{0}
So, in order to see a neighborhood of x_{0}, that is numbers near x_{0}, that isnumbers that differ from x_{0} by only infinitesimal numbers, we would need to aim a magnifier at x_{0}, the center of the neighborhood.

Again, the fact that a neighborhood needs to be representd at a scale larger than the scale of the ruler creates a problem. And again, a way out would be to represent the neighborhood of x_{0} just under the ruler:

ii. But on a qualitative ruler we can represent a neighborhood of x_{0} as

7. Side-neighborhoods. In order to deal separately with each side of a neighborhood we will often have to distinguish the side-neighborhoods. Pinning down the left-neighborhood from the right-neighborhood, though, depends on the nature of the point:

- - A left-neighborhood of 0 consists of the negative numbers near 0
(negative infinitesimal numbers),
- A right-neighborhood of 0 consists of the positive numbers near 0 (positive infinitesimal numbers),
In order to deal separately with each side of a neighborhood of 0 , we will employ the symbols
- $\mathbf{0}^{+}$(namely 0 with a little + up and to the right) which is standard expression for positive infinitesimal numbers.
Positive infinitesimal numbers are right of of 0 , that is they are to our right when $R B C$ are facing 0 , the center of the neighborhood.
- $\mathbf{0}^{-}$(namely 0 with a little - up and to the right) which is standard expression for negative infinitesimal numbers.
Negative infinitesimal numbers are left of 0 , that is they are to our left when $R B C$ are facing 0 , the center of the neighborhood.

EXAMPLE 0.69. 0^{+}refers toinfinitesimalnumbers right of 0 (such as for instance +0.37) and 0^{-}refers to infinitesimal numbers left of 0 (such as for instance - 0.88):

So, never forget that

CAUTION 0.13^{--}or ${ }^{-}$up to the right and by itself is not an 'exponent' but indicates which side of 0 .

- - A left-neighborhood of ∞ consists of the positive numbers near ∞ (positiveinfinite numbers),
- A right-neighborhood of ∞ consists of the negative numbers near ∞ (negative infinite numbers),
Just as we will often have to refer separately to each side of a neighborhood of 0 , we will often have to refer separately to each side of a neighborhood of ∞
BeginWORKzone - BeginWORKzone - BeginWORKzone - BeginWORKzone - BeginWORKz
So we will use:
- $+\infty$ as symbol for positive infinite numbers,
- $-\infty$ as symbol for negative infinite numbers,
even though
EndWORKzone - EndWORKzone - EndWORKzone - EndWORKzone - EndWORKzone We will then employ as line:

- Keep in mind that it is easy to forget which side is left of ∞ and which side is right of ∞ because it is easy to forget that one must face the center of the neighborhood, namely ∞ :
- Positive infinite numbers are left of ∞ because, to face the center of the neighborhood, we have to imagine ourselves facing ∞, and then positive numbers will be to our left.

EXAMPLE 0.70. $\quad+724873336.58$ is left of ∞

- negative infinite numbers are right of ∞ because, to face the center of the neighborhood, we have to imagine ourselves facing ∞, then negative numbers would be to our right.

EXAMPLE 0.71.

- - A left-neighborhood of x_{0} consists of the numbers near x_{0} that are smaller than x_{0},(medium-size numbers that differ from x_{0} by only infinitesimal numbers).
- A right-neighborhood of x_{0} consists of the numbers near x_{0} that are larger than x_{0},

8. Interplay between 0 and ∞. As already mentioned in Section 4 - Expressions And Values (Page 12), both Expressions And Values have intrigued people for a long time:
i. While, as mentioned in Section 4 - Expressions And Values (Page 12), both 0 and ∞ are literally without meaning, both 0 and ∞ are absolutely and completely indispensable.

EXAMPLE 0.72. When we have eaten three apples out of five apples, we indicate that there are two apples left by writng:

$$
5 \text { apples }-3 \text { apples }=2 \text { apples }
$$

But when we have eaten three apples out of three apples, how do we indicate that there is none left?

$$
3 \text { apples }-3 \text { apples }=? \text { apples }
$$

EXAMPLE 0.73. When we count "eight, nine, ten, eleven" we employ a rhythm as indicated by the commas, say:
eight 1 sec nine 1 sec ten 1 sec eleven
And in fact, when we start counting with "eight", we think we are counting from "seven" and precede "eight" with the same silence:

1 sec eight 1 sec nine 1 sec ten 1 sec eleven
But from what number are we thinking we are starting from when we start
counting with "one" and precede "one" by the same silence? 1 sec one 1 sec two 1 sec three 1 sec fout

EXAMPLE 0.74. When we get impatient and want to stop counting, we probably end the counting with "etc"

EXAMPLE 0.75. When a number is so large that we cannot even begin to imagine it, we often employ the word "infinite".
ii. Even though, as an input, 0 is usually not particularly important, there is an intriguing "symmetry" between ∞ and 0 namely:

More precisley, small numbers are some sort of inverted image of large numbers since the reciprocal of a large number is a small number and vice versa.
EXAMPLE 0.76. The opposite of the reciprocal of -0.001 is +1000 . In a Magellan aspect, we have

iii. Moreover, since by ?? ?? - ?? (??), infinitesimal numbers are near 0 and infinite numbers are near ∞, Theorem 0.6 - Reciprocity of qualitative sizes (Page 44) can be restated as

THEOREM 0.6 (Restated) Reciprocity of qualitative sizes

- The reciprocal of a number near ∞ is a number near 0 ,
- The reciprocal of a number near 0 is a number near ∞.

It then seems somewhat artificial, even though ?? ?? - ?? (??) and Caution 0.2 - No other number (Page 5), not to extend the reciprocity of numbers near 0 (infinitesimal numbers) and numbers near ∞ (infinite numbers) to a reciprocity of 0 and ∞ themselves. So,

AGREEMENT 0.6 Since we will not compute with ∞, this will only be a shorthand for Theorem (Restated) 0.6 - Reciprocity of qualitative sizes (Page 59).
But what an extremely convenient shorthand!

Part I

Functions Given By Data

Everything Connects To
 Everything Else. ${ }^{17}$

Leonardo da Vinci
connect

Chapter 1

Relations Given By Data

Relations Given By Data-sets, 64 • Relations Given By Data-plots, 79 .

The truth of the above quote from Da Vinci can be seen everywhere.
EXAMPLE 1.1. Everything sits on something else: people sit on chairs that sit on floors that sit on joists that sit on walls that sit on ...

All people are six or fewer social connections away from each other. ${ }^{a}$

[^41]And in fact, Da Vinci's statement is at the very heart of all ScIEnces: For a sentence to say something useful about something, we usually must look at that thing in connection to other things.

Even if we can't always see, let alone understand, the connections.

EXAMPLE 1.2. We might say that someone's income tax was $\$ 2270$ but, by itself, that wouldn't be saying much because

- \$2270 of income tax was a lot more money in Year 1913 -the year income tax was first established, than, say, in Year 2023. So, for saying that someone's income tax is $\$ 2270$ to be useful, we would have to have some relation relating years with Income Tax,
Similarly, because

[^42]© ${ }^{2}$ ativishe, what we would reallgkeroantais income tax in Qetatide with both year and income ation parenthesis
(
)
pair

- \$2270 of income tax is a lot more money for the rest of us than for billionaires, for saying that someone's income tax is $\$ 2270$ to be useful, we would have to have some relation relating Incomes with Income Tax.

1 Relations Given By Data-sets

The mathematical concept underlying Da Vinci's connections is that of a relation but there are many kinds of relations and many ways to give a relation.

1. Ordered pairs. That a first item is related to a second item in a particular way does not guarantee that the second item will be related to the first item in the same way.

EXAMPLE 1.3. While "Beth is the sister of Jill" guarantees that "Jill is the sister of Beth", "Jack likes Jane" does not guarantee that "Jane likes Jack".

An ordered pair of items then is two items in a given order. ${ }^{18}$

LANGUAGE 1.1

Ordered pairs are also called 2-tuples but $R B C$ won't employ that word.

The standard way to write ordered pairs is with the pair notation in which the two items are written in the given order, separated by a comma and enclosed between the parentheses (and).

EXAMPLE 1.4. The ordered pair (Eiffel Tower, Empire State Building) is not the same as the ordered pair (Empire State Building, Eiffel Tower)

Just like a pair of shoes is not the same kind of pair as a pair of socks.

CaUtion 1.1 In Mathematics:

- An ordered pair
is not to be confused with
- A pair, which is just a collection of two items so that the order in which the two items in a pair are given is irrelevant.

Nevertheless, since $R B C$ will employ only ordered pairs:

[^43]AGREEMENT 1.1 The adjective "ordered" will go without saying and $R B C$ will employ the word pair as short for ordered pair.
2. Data-sets. The simplest kind of relation occurs in the discrete aspect of the real world and is given by way of a data-set consisting of:

- A collection of left-items,
- A collection of right-items,

AGreement 1.2

To help distinguish left-items from right-items, $R B C$ will employ:

- Pink boxes for left-items as in, for instance,

$$
\text { Jill, } x,-0.053, x_{0}, 0 \infty, \text { small, large },
$$

- Green boxes for right-items as in, for instance,

Jack, $y,+32.14, y_{0}, 0 \infty$, small, large,
together with

- A collection of related-pairs, that is a collection of (ordered) pairs in which:
i. The first item is a left-item
ii. The second item is a right-item
and
iii. The left-item is related-Da Vinci would have said "connected"to the right-item which will be indicated with the related-pair notation in which the angles 〈 and 〉 replace the parentheses (and) so that \langle left-item, right-item \rangle will say that left-item is related to right-item.

Of course there will also be unrelated-pairs, that is (ordered) pairs in which:
i. The first item is a left-item,
ii. The second item is a right-item
but
iii. The left-item is not related to the right-item so that $R B C$ cannot employ the related-pair notation and can only write (left-item, right-item).
source
target
graph

AGREEMENT 1.3 $R B C$ will employ the word pair when we don't know or don't care whether the pair is a related-pairs or a unrelatedpair.

LANGUAGE 1.2 For the sake of immediate transparency, $R B C$ will not employ the following standard words:

- Source for the collection of left-items,
- Target for the collection of right-items,
- Graph for the collection of related-pairs-but this to keep the word graph for the picture of the collection of related-pairs.
Also,
- $R B C$ will not employ the word data just by itself because the word data just by itself is just (standard) jargon for given information ${ }^{a}$.
${ }^{a}$ https://en.wikipedia.org/wiki/Data

CAUTION 1.2 Readers curious about how relations are dealt with in other books should always make sure what calculus words are being employed for collection of left-items and collection of right-items because calculus words other than source and target can be employed ${ }^{a}$.
${ }^{a}$ https://en.wikipedia.org/wiki/Relation_(mathematics)

An interesting consequence of Da Vinci's statement is that, in fact, any given item is "known" only by what is already known of the items that the given item is connected/related to.

EXAMPLE 1.5. Sayings about the idea that items are known by what is known of the items they are connected to are found in many cultures ${ }^{a}$:

What a shame though! Such
 then?
$\begin{array}{lll}\text { You tell me the company you keep, I will then tell you what you are } & \text { (Dutch) } & \text { ram } \\ \text { You tell me who's your friend, I will then tell you who you are } & \text { (Russian) } & \text { ow } \\ \text { You tell me your company, I will then tell you who you are } & \text { (Irish) } \\ \text { You tell me what you are eager to buy, I will then tell you what you are } & \text { (Mexican) } \\ \text { You tell me with whom you go, I will then tell you what you do } & \text { (English) } \\ \text { You tell me who your father is, I will then tell you who you are } & \text { (Philippine) } \\ \text { You tell me what you eat, I will then tell you what you are } & \text { (French) }\end{array}$
${ }^{a}$ https://www.linkedin.com/pulse/show-me-your-friends-ill-tell-you-who-really-jan-johnston-osburn
3. Arrow diagrams, list, tables. The reason we began with relations given by data-set even though Discrete Mathematics is not part

In other words, like collections of whole numbers. of Calculus, is that relations given by data-sets are the easiest to give.
i. Arrow diagrams. The most immediately transparent way to give a data-set is by way of an arrow diagram, in which:
a. The collection of left-items and the collection of right-items are both given by way of Venn diagrams ${ }^{19}$

EXAMPLE 1.6. Venn diagrams for:

b. The collection of related-pairs is given by way of pairing-arrows.

EXAMPLE 1.6. (Continued) The two collection of items could be connected by pairing-arrows into, for instance, the following arrow diagram:

[^44]Couldn't resist arrows going from Source to Target!

In plain English: Cathy likes
to prove but not to sing.

which says, for instance, that Cathy likes to prove and that Cathy does not like to sing .
Moreover:

- Since Jack is not in the collection of Persons, the pair (Jack, prove) is just a pair,
- Since swimming is not in the collection of activities, the pair (Beth, swimming) is just a pair,
- Since Cathy does not like to cook, the pair (Cathy, cook) is an unrelated-pair,
- Since Andy likes to walk, the pair (Andy, walk) is a related-pair which we can therefore write \langle Andy, walk \rangle.

While arrow diagrams are very transparent, a limitation of arrow diagrams is that there can only be a very few items in the collections.
ii. Lists A perhaps less transparent, but certainly much more efficient, way to give data-sets than to employ arrow diagrams is just to write the collections as lists:
a. The collection of left-items and the collection of right-items by way of two lists of items.

EXAMPLE 1.6. (Continued) List of items:
List of Persons: List of activities:
Andy, Beth, Cathy . walk, sing, cook, prove, read.
b. The collection of related-pairs by way of a list of related-pairs.

taken from from the list of all possible pairs

(Andy, cook	(Andy, prove)	Andy, walk)	Andy, sing)	Andy, read)
(Beth, cook)	(Beth, prove)	Beth, walk)	Beth, sing) (B	Beth, read)
(Cathy, cook)	Cathy, prove	(Cathy, walk	(Cathy, sing)	$)($ Cathy, read $)$

Lists are clear and allow for quite a few items in the collections-but still not very many,
iii. Tables Using lists to display data-sets, though, can be tedious unless in the shape of tables where the lists are in rows and columns in a way that makes the (left-item, right-item) pairs easy to see. (https://en. wikipedia.org/wiki/Table_(information))

Among different kinds of tables, there are:

- List tables in which the collection of left-items is listed in the Because the height of a lefthand column and next to each left-item the related right-item(s), if page is larger than the any, are listed horizontally.

Example 1.6. (Continued) Given by list table:

Persons	activities, if any, that Persons, if any, like	
Andy	walk	sing
Beth		
Cathy	read	walk prove
	cook	

where, for instance, the following part of the table

Persons	activities, if any, that Persons, if any, like
Cathy	walk

says that the sentence 'Cathy likes to walk' is TRUE that is, in other words, that the pair (Cathy, walk) is a related-pair which therefore we can write \langle Cathy, walk \rangle.

- Cartesian tables which are much more systematic than list tables:
- All the left-items are listed in a vertical column on the left,
- All the right-items are listed in a horizontal row on top,
- For each (left-item, right-item) the word TRUE or FALSE at the intersection of the horizontal row of the left-item and the vertical column of the right-item indicates whether the sentence "left-item is related to right-item" is TRUE or FALSE, that is whether the pair (left-item, right-item) is a related-pair which we can then write \langle left-item, right-item \rangle or an unrelated-pair which we can only write (left-item, right-item).

EXAMPLE 1.6. (Continued) Given by Cartesian table:

likes to	walk	sing	read	prove	cook
Andy	TRUE	TRUE	FALSE	FALSE	FALSE
Beth	FALSE	FALSE	FALSE	FALSE	FALSE
Cathy	TRUE	FALSE	TRUE	TRUE	FALSE

where, for instance, in the following part of the table

the word 'TRUE' says that the sentence 'Cathy likes to prove' is TRUE that is, in other words, that the pair (Cathy, prove) is a related-pair which therefore we can write \langle Cathy, prove \rangle.

On the other hand, for instance, in the following part of the table

the word 'FALSE' says that the sentence " Cathy likes to sing ' is FALSE that is, in other words, that the pair (Cathy, sing) is an unrelated-pair which therefore we cannot write with angles but only with parentheses.
4. Forward and backward problems. Given a relation, there are of course many questions we can ask and the way $R B C$ will proceed to answer these questions will depend on how the relation is given:

The simplest question is of course whether a given (left-item, right-item) pair is or is not a related-pair.

EXAMPLE 1.6. (Continued) We may ask:
Does Cathy like to sing?
Answer: No, because the pair (Cathy, sing) is not a related-pair
Does Cathy like to prove?
Answer: Yes, because the pair (Cathy, prove) is a related-pair which can be written <Cathy, prove \rangle

However, given a relation, the more consequential questions that may be asked are relation problems.
A. In a forward relation problem the information that is wanted is about a given left-item in terms of the right-item if any that the given left-item is related to:

To which right-item(s) if any, is a given left-item (left-number) related to?
In other words, in a forward problem the information goes from left to right:

A given left-item is related to which right-item(s) if any?
But how forward problems will be dealt with will depend on the way the relation (numerical endorelation) is given.
a. List tables make it particularly easy to solve forward problems: look up the given left-item in the left column and you will see the right-item(s)
relation problem
forward relation problem

This question will in fact turn out to be essential for picturing relations.
that the given left-item is related to, if any, listed on that row.
Example 1.6. (Continued) If we ask for all the activities which Cathy likes, the list table in Example 1.6 (Page 67) shows:

Cathy | read walk prove
If we ask for all the activities which Beth likes, the list table in Example 1.6 (Page 67) shows:

$$
\text { Beth } \mid \square \square \square
$$

And, similarly, the list table in Example 1.6 (Page 67) even gives answers to questions such as:
Is there any activity Beth likes? (Answer: No)
Does Cathy like all activities? (Answer: No)
Does Andy like at least one activity? (Answer: Yes)
b. Cartesian tables are only just a bit harder to employ: look up the given left-item in the left column and the right-items that the given left-item is related to, if any, will be in the columns with the word TRUE.

EXAMPLE 1.6. (Continued) If we ask for all the activities which Cathy likes, the Cartesian table shows:

| likes to | walk | sing | read | prove cook | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| Cathy | TRUE | FALSE | TRUE | TRUE | FALSE |

And if we ask for all the activities which Beth likes, the Cartesian table shows:

likes to	walk	sing	read	prove	cook
Beth	FALSE	FALSE	FALSE	FALSE	FALSE

And, similarly, the Cartesian table even readily answers questions such as: Is there any activity Beth likes? (Answer: No) Does Cathy like all activities? (Answer: No)
Does Andy like at least one activity? (Answer: Yes)

EXAMPLE 1.7. In ?? (??), we may ask In 2002, did the business really return +5000 ?

EXAMPLE 1.8. In ?? (??), a forward problem might for instance be: What was the profit/loss returned by the business in 1999?
Answer: -2000
EXAMPLE 1.9. In Example A. 27 (Page 239), a forward problem might for instance be:

$$
75 \text { cents } \xrightarrow{\mathcal{J O E}} \mathcal{J O E}(75 \text { cents })=y \text { minutes }
$$

that is, how many minutes of parking time will $\mathcal{J O E}$ return for 75 cents ?

EXAMPLE 1.10. Solving forward problem in the real world like figuring how much parking time will three quarters buy you is easy: if nothing else, just put three quarters in the parking meter and see how much parking time you get!

EXAMPLE 1.11. In ?? (??),
There is no Profit/Loss for Year 2000.
B. In a backward problem the information that is wanted is about a given right-item in terms of the left-item(s) (left-number(s)), if any, that is/are related to the given right-item :

Which left-item(s) (left-number(s)), if any is/are related to a given right-item?
In other words, in a backward problem the information goes from right to left :
A given right-item is related to which left-item(s) (left-number(s)), if any?
But, again, how backward problems will be dealt with will depend on the way the relation (numerical endorelation) is given.
a. List tables are fairly unsuited to solving backward problems because you have to hunt for the given right-item in all the rows of the right hand column.

EXAMPLE 1.11. (Continued) If we ask for all the Persons who like to walk, the list table shows:

Persons	activities, if any, that Persons like
Andy	walk sing
Beth	
Cathy	read walk prove
	cook

If we ask for all all the Persons who like to cook, the list table showa:

Persons	activities, if any, that Persons like
Andy	walk sing
Beth	
Cathy	read walk prove
	cook

And similarly, the list table even answers questions such as:
Is there at least one Person who likes to cook? (Answer: No)
Is there at least one Person who likes to walk? (Answer: Yes) Do all Persons like to walk? (Answer: No)
b. Cartesian tables, on the other hand, make it just as easy to solve backward problems as to solve forward problems: look up the given right-item in the top row and the left-item(s) that are related to the given right-item , if any, will be in the rows with the word TRUE.

EXAMPLE 1.11. (Continued) If we ask for all the Persons who like to walk, the Cartesian table shows:

| likes to | walk |
| :--- | :--- | :--- |
| Andy | TRUE |
| Beth | FALSE |
| Cathy | TRUE |

If we ask for all the Persons who like to cook, the Cartesian table shows:

likes to	cook
Andy	FALSE
Beth	FALSE
Cathy	FALSE

And, similarly, the Cartesian table even answers questions such as:
Is there at least one Person who likes to cook? (Answer: No)
Is there at least one Person who likes to walk? (Answer: Yes)
Do all Persons like to walk? (Answer: No)

EXAMPLE 1.12. In ?? (??), a backward problem might for instance be: In what year(s) (if any) did the business return +5000 ?
Answer: 1998, 2001, 2005.
EXAMPLE 1.13. In Example A. 27 (Page 239), a reverse problem might for instance be:

$$
x \text { cents } \xrightarrow{\mathcal{J O E}} \mathcal{J O E}(x \text { cents })=50 \text { minutes }
$$

that is, how many cents should we input for $\mathcal{J O E}$ to return 50 minutes parking time?

Of course, backward problems do not have to have a solution any more than forward problems do .

EXAMPLE 1.14. In ?? (??),
There is no Year for which the Profit/Loss is 6000 .

As might perhaps have been expected, backward problems are harder to solve - it's, as will be seen, what 'solving equations' is all about, but also what matters most in the real world.

EXAMPLE 1.15. What we usually need to solve in the real world is, for instance, given that we must park for 45 minutes parking time, how many quarters we need to put in the parking meter.
5. Endorelations. There is no reason why the collection of left-items and the collection of right-items cannot be one and the same. and when the collection of left-items and the collection of right-items are one and
\#mastoferticosake of precision! the same collection of items, the relation is called an endorelation ${ }^{20}$.

EXAMPLE 1.16.

Arrow diagram:

| Persons | Persons, if any, whom Persons like | |
| :--- | :--- | :--- | :--- |
| Alma | Alma | Carla Dave |
| Brad | | |
| Carla | Alma Brad | |
| Dave | | |
| Emma | Carla | |
| | Emma | |

	likes	Alma	Brad	Carla	Dave	Emma
Cartesian table:	Alma	TRUE	FALSE	TRUE	TRUE	FALSE
Brad	FALSE	FALSE	FALSE	FALSE	FALSE	
Carla	TRUE	TRUE	FALSE	FALSE	FALSE	
Dave	FALSE	FALSE	FALSE	FALSE	FALSE	
	Emma	FALSE	FALSE	TRUE	FALSE	FALSE

6. Numerical relations In $R B C$, both left-items and right-items will be signed decimal numbers and so:
[^45]| LANGUAGE FOR | |
| :--- | :--- |
| NUMERICAL RELATIONS (I) | |
| Instead of: | $R B C$ will employ: |
| left-item | left-number |
| right-item | right-number |
| collection of left-items | collection of left-numbers |
| collection of right-items | collection of right-numbers |

collection of numbers
left-number
right-number
collection of left-numbers
collection of
right-numbers
numerical endorelation

Then, keeping in mind that x_{0} and y_{0} are symbols for generic given numbers, that is numbers that you, the reader, will give, Numbers and infinity (Subsection 7.2, Page 26), $R B C$ will employ x_{0} as generic given left-number and y_{0} as generic given right-number.

However:
CAUTION 1.3 A numerical relation need not be an endorelation because even though the left-numbers and the right-numbers both have to be signed decimal numbers, the collection of left-numbers need not be the same as the collection of right-numbers.

EXAMPLE 1.17. The relation in which the left-items are $-3.78,+1.07$, +17.0 and the right-items are $-22,+34$ is a numerical relation but cannot be an endorelation whatever the related pairs are.
7. Numerical endorelations Often, though, it will be convenient to consider numerical relations in which the collections of left-numbers is the same as the collections of right-numbers which $R B C$ will thus refer to as numerical endorelations.

EXAMPLE 1.17. (Continued) On the other hand, a relation in which the collection of left-numbers and the collection of right-numbers are both the collection of all signed decimal numbers will be a numerical endorelation regardless of what the related pairs are.

A numerical endorelation can be given like any relation that is by an arrow diagram, a list, and tables.

EXAMPLE 1.18. A numerical endorelation whose collection of numbers consists of the numbers $1,2,3,4,5$, can be given by an arrow diagram such
as:

or by the corresponding list table:

Left-numbers:	Right-numbers, if any, that the left-numbers are related to:		
1	1	3	5
2			
3	3		
4	4		
5			

However, giving numerical endorelations by data-sets presents a problem in that,

CAUTION 1.4 Collections of left-numbers are sparse that is, there can be only so many left-number in a data-set.

Parentheses
In other words, the gaps between the left-numbers in the collection of left-numbers limit the information we can get.

EXAMPLE 1.19. The data-set consisting of the collection of left-numbers $\ldots-3,-2,-1,0,+1, \ldots$ together with the collection of related-pairs
$\ldots\langle-3,-3\rangle,\langle-2,-2\rangle,\langle-1,-1\rangle,\langle 0,0\rangle,\langle+1,+1\rangle,\langle+2,+2\rangle,\langle+3,+3\rangle, \ldots$ gives a numerical endorelation but no information at all about in-between left-numbers

Since from now on all the relations that RBC will consider will be numerical endorelations,

Agreement 1.4 From now on, $R B C$ will employ the word relation as a shorthand for numerical endorelation.

2 Relations Given By Data-plots

basic picture
left-ruler
left-mark
right-ruler
right-mark
pairing-link

Even though arrow diagrams are a very natural and very visual way to picture simple relations, more systematic ways will be needed to picture relations.

1. Basic picture. Since rulers can picture numbers with marks, a relation that involves only a few numbers can easily be pictured with a basic picture, that is with just:

- a left-ruler, that is a ruler on which to left-mark left-numbers,
- a right-ruler, that is a ruler on which to right-mark right-numbers,
-which have the advantage of giving more systematic pictures of collections of numbers than Venn diagrams do-together with
- a collection of pairing-links to picture the related-pairs.

Then,
Procedure 1.1 To get the basic picture of a given numerical endorelation.
i. Draw a left-ruler and left-mark the left-numbers,
ii. Draw a right-ruler and right-mark the right-numbers,
iii. For each related-pair, draw a pairing-link from the left-mark to the right-mark

Demo 1.1 To get the basic picture of the numerical endorelation given in Example 1.19 (Page 78)
i. We draw a left-ruler and left-mark $1,2,3,4,5$,

ii. We draw a right-ruler and right-mark $1,2,3,4,5$,

Cartesian setup
Descartes
screen

iii. For each related-pair, we then draw a pairing-link from the left-mark to the right-mark

2. Cartesian picture. Even though the left-ruler and the right-ruler in basic pictures provide good pictures of the collection of left-numbers and the collection of right-numbers, pairing-links are not really that different from pairing-arrows and since from now on $R B C$ will be dealing only with numbers, the collections will usually be fairly big so picturing those relations will require a more efficient setup than just basic pictures.

The Cartesian setup, which is what $R B C$ will employ, is due to René Descartes ${ }^{21}$ who invented Analytic Geometry ${ }^{22}$ in order to employ AlGEBRA ${ }^{23}$ to solve problems in GEOMETRY ${ }^{24}$.

Just like a basic picture, a Cartesian setup involves

- A left-ruler for left-numbers
- A right-ruler for right-numbers
but Descartes' stroke of genius was to employ a rectangular area which $R B C$ will call the screen, and to draw:
- the left-ruler horizontally below the screen
- the right-ruler vertically left of the screen

EXAMPLE 1.20.

[^46]
pairing-dot
left-number level-line
right-number level-line
relating-dot
non-relating-dot
plain-dot
data point

Yeah, sure enough, Cartesian setups are upside down from Cartesian tables !!!!! being pictured by pairing-links as in the basic picture, in a Cartesian setup any pair of numbers can be pictured with just a pairing-dot, that is the point at the intersection of

- the left-number level-line namely the vertical line through the left-mark,
and the
- right-number level-line namely the horizontal line through the right-mark,
and the pairing-dot can be:
- a relating-dot picturing with a solid dot - a related-pair,
- a non-relating-dot picturing with a hollow dot o an unrelated-pair, Dots relating left-marks to but also just
- a plain-dot picturing with an ordinary dot • a pair of numbers which
right-marks to picture related pairs of numbers! might have nothing to do with the relation at hand or, if it does, either we don't know or don't care whether the pair of numbers is a related-pair or an unrelated-pair.
In fact,
- the part of the left-number level-line from the left-mark to the pairingdot
followed by
- the part of the right-number level-line from the pairing-dot to the right-mark can be looked-upon as a pairing-link with an elbow at the pairing-dot.

LANGUAGE 1.3 The word "dot" is not standard but, because $R B C$ is already utilizing the word "point" with a different meaning, $R B C$ can neither employ the word plot point, standard in Mathematics, nor the word data point, standard in the experimental sciences. Subsection 4.1 - Global expressions (Page 12)

Then,

Procedure 1.2 To plot a given pair of numbers (in a Cartesian setup),
i. Left-mark the left-number,
ii. Draw the left-number level-line through the left-mark,
iii. Right-mark the right-number,
iv. Draw the right-number level-line through the right-mark,
v. Mark the intersection of the left-number level-line with the right-number level-line with the appropriate pairing-dot.

Demo 1.2

Plot the related-pair $\langle+3,+40\rangle$.
i. We left-mark +3 ,
ii. We draw the +3 level-line through the +3 mark,
iii. We right-mark +40 ,
iv. We draw the +40 level-line through the +40 mark,
v. Since $\langle+3,+40\rangle$ is a related-pair, we mark the intersection of the +3 level-line with the +40 level-line with a solid dot,

and

Procedure 1.3 To read the pair of numbers from a given pairingdot,
i. Draw the left-number level-line through the pairing-dot,
ii. Left-mark the intersection of the left-number level-line with the left-ruler
iii. Draw the right-number level-line through the pairing-dot,
iv. Right-mark the intersection of the right-number level-line with the right-ruler,
v. Use the appropriate parrentheses for the pair of marked numbers

Demo 1.3 Get the pair of numbers for the following pairing-dot

i. We draw the left-number level-line through the pairing-dot,
ii. We left-mark the intersection of the left-number level-line with the left-ruler: - 2 ,
iii. We draw the right-number level-line through the pairing-dot,
iv. We right-mark the intersection of the right-number level-line with the

right-ruler: +10

histogram bar graph
v. Since the given pairing-dot is hollow, the pair of marked numbers is unrelated: $(-2,+10)$

3. Rulers vs. axes.

LANGUAGE 1.4 Keeping the left-ruler and the right-ruler away in the offscreen space as $R B C$ is doing in the Cartesian setup is standard in the real world:

Cartesian Table

Histogram ${ }^{a}$

Bar graph ${ }^{b}$
just as it was for Descartes who, since he did not employ negative numbers, could employ the 0 level-line as left-ruler and the 0 level-line as right-ruler which were both out of the way:

Descartes

But when negative numbers became acceptable, mathematicians continued to employ :

- the 0 level-line as left-ruler and
- the 0 level-line as right-ruler even though the left-ruler (called x-axis) and the right-ruler (called y-axis) are now both in the middle of the picture:

Modern

${ }^{a}$ See https://en.wikipedia.org/wiki/Histogram
${ }^{b}$ See https://en.wikipedia.org/wiki/Bar_chart

But then:

CAUTION 1.5 Utilizing the x-axis as left-ruler can be confusing because:

- The pairing-dot for $\left(x_{0}, 0\right)$ will then be on top of the x_{0} mark which can make it unclear which is intended,
and so can employing the y-axis as right-ruler because:
- The pairing-dot for $\left(0, y_{0}\right)$ will then be on top of the y_{0} mark which can make it unclear which is intended.

EXAMPLE 1.21. When utilizing the x-axis as left-ruler and the y-axis as right-ruler:
The pairing-dot for $(+4,0)$ is on The pairing-dot for $(0,-50)$ is on top of the +4 mark:

4. Picturing data-sets with data-plots. Since we can mark

- collections of left-numbers as collections of left-marks,
- collections of right-numbers as collections of right-marks,
and we can plot
- collections of related-pairs as collections of relating-dots,
data-plot quincunx

Cartesian setups allow picturing even large data-sets with data-plots, that is with Cartesian setups showing just the collection of relating-dots-but where both left-marks and right-marks are left for the user to get as needed from the relating-dots with Procedure 1.3 - Read a pairing-dot (Page 83)

EXAMPLE 1.22.

EXAMPLE 1.23.

A particular data-plot that $R B C$ will employ frequently is the quincunx ${ }^{25}$, that is the five pairing-dots picturing the following five pairs:

$$
\begin{aligned}
& (-1,+1) \quad(+1,+1) \\
& (-1,-1) \quad(0,0)
\end{aligned}
$$

Note that here the pairing-dots are just plain dots because, here, we don't know which of the five (left-number right-number) pairs in the quincunx are related-pairs and which are unrelated-pairs.

In fact, which of the five (left-number right-number) pairs in the quincunx are related-pairs will play a central role with power functions.

[^47]In engineering and the experimental sciences, aside from being given by forward problem Cartesian tables, relations are often given by data-plots generated by some machinery ${ }^{26}$.

However, what can complicate matters is the fact that

CAUTION 1.6 As a consequence of the Parentheses, data-plots are also sparse.
5. Solving forward problems. To solve a forward problem for a relation given left-number when the relation is given by a data-plot, $R B C$ will employ

Procedure 1.4 To get the right-number(s) (if any) related to x_{0} when the relation is given by a data-plot,
i. Left-mark x_{0},
ii. Draw a left-number level-line at the x_{0} mark
iii. Mark the relating-dot(s) that are on the x_{0} level-line, if any-this is where the sparseness of relating-dots comes in,
iv. Draw a right-number level-line through each marked relating-dot,
v. Right-mark the right-number(s) related to x_{0}, if any, on the right-ruler at the right-number level-line(s).

[^48]i. We left-mark -2 .
ii. We draw the -2 level-line at the -2 mark,
iii. We mark the single relating-dot on the -2 level-line,
iv. We draw a right-number level-line through the single marked relating-dot,
v. We right-mark on the right-ruler at the single right-number level-line the single right-number related to
 -2 : +30 .

Demo 1.4b
Given the data-plot

get the right-number(s),
if any, related to +2 .
i. We left-mark +2 ,
ii. We draw the +2 level-line at the +2 mark,
iii. We mark the two relating-dots on the +2 level-line,
iv. We draw the
right-number level-line through each of the two marked relating-dots,
v. We right-mark on the right-ruler at the two right-number level-lines the two right-numbers related to +2
 : +30 and -60 .

DEMO 1.4c

Given the data-plot

i. We left-mark +1 .
ii. We draw the +1 level-line at the +1 mark,
iii. There is no relating-dot on the +1 level-line to mark-relating-dots are sparse, so there is no right-number related to the given $+1$

6. Solving backward problems. To solve a backward relation problem for a given right-number when the relation is given by a data-plot, $R B C$ will employ

Procedure 1.5 To get the left-number(s) (if any) related to y_{0} when the relation is given by a data-plot,

i. Right-mark y_{0}

ii. Draw a right-number level-line at the y_{0} mark
iii. Mark the relating-dot(s) that are on the y_{0} level-line, if anythis is where the sparseness of relating-dots comes in, iv. Draw a left-number level-line through each marked relatingdot,
v. Left-mark the left-number(s) related to y_{0}, if any, on the left-ruler at the left-number level-line(s)

Demo 1.5a

Given the relation given by the data-plot

i. We right-mark +30 .
ii. We draw the +30 level-line at the +30 mark,
iii. We mark the two relating-dots on the +30 level-line,
iv. We draw a left-number level-lines through each of the two marked relating-dots,
v. We left-mark on the left-ruler at the two left-number level-lines the two left-numbers related to +30 :
 $-2,+3$.

i. We right-mark (the given) -50 .
ii. We draw the -50 level-line at the - 50 mark,
iii. We mark the single relating-dot on the -50 level-line,
iv. We draw a left-number level-lines through the single marked relating-dot,
v. We left-mark on the left-ruler at the single left-number level-line the
 single left-number related to -50 : -2 .

i. We right-mark -30 .
ii. We draw the -30 level-line at the -30 mark,
iii. There is no relating-dot on the -30 level-line to mark-relating-dots are sparse, so there is no left-number related to the given -30

EXAMPLE 1.24. Given the business in ?? (??),

- $(1998,+5000)$ and $(2002,-2000)$ are input-output pairs,
- (1999, +3000) is not an input-output pair because the table does not pair 1999 with +3000 ,
- There is no input-output pair involving 2000
- There is no input-output pair involving +3000

Functions of various kinds are "the central items of investigation" in most fields of modern mathematics. ${ }^{18}$

Michael Spivak ${ }^{19}$
Spivak
change

Chapter 2

Functions Given Graphically

Which, of course, is function. See Spivak!

To See Change, 93 • Functions Given By Input-Output Plots, 101 - Functions Given By Curves, 114 • Local Graphs, 126 .

Even though, historically, CALCULUS is short for "calculus of functions" ${ }^{20}$, Part I - Functions Given By Data (Page 63) began with relations because, as pointed out by Da Vinci, relations are the more immediately universal concept and therefore the background against which functions will make sense.

1 To See Change

Calculus is indeed essentially about how things change and another consequence of Da Vinci's connectivity is that, in order to see how things change, we will have to look at these things in relation to other things that change differently.

Example 2.1. To see that:

- The airplane we are sitting in is moving, we must look out the window.
- The tree out our living room window is growing, we must look at the tree in relation to something like a building.

But then, the fact that a numerical endorelation can relate one left-number to many right-numbers can make it difficult to see differences between

[^49]function
functional
left-numbers in terms of the right-numbers that these left-numbers are related to.

EXAMPLE 2.2.

- A slot machine can pay for the same number of coins just about any number of coins which makes it quite hard to decide if this slot machine is better for gambling than that other slot machine.
while
- A parking meter can let you park for a number of coins only one number of minutes which makes it easy to decide if this parking meter is better for parking than that other parking meter.

1. To be or not to be functional. Altogether then, even though

If you are going to read one and only one single Wikipedia article, https: // en. wikipedia.org/wiki/ Function_(mathematics) is absolutely and definitely the one to read-along with ?? ?? of course.
there are many parts of Mathematics dealing with other kinds of relations, $R B C$ will deal with functions, that is with numerical endorelations that are functional in that they meet

Definition 2.1 The Functional Requirement, that is the requirement for a numerical endorelation to be a function, can be stated in different but equivalent ways:

No left-number can be related to more than one right-number .
or, in other words,
A left-number can be related to no more than one right-number. or, in other words,
A left-number cannot be related to more than one right-number . or, still in other words,

A left-number can be related to at most one right-number.

EXAMPLE 2.3. In EXAMPLE 2.2 (Page 94)

- The slot machine does not meet the ?? because when two Persons play the same amount of money in a slot machine, the slot machine can pay different amounts of money to the two Persons.
- The parking meter does meet the CtitlerefDFN:1-1 because when two Persons put in the same amount of money into a parking meter, the parking
meter will always allow the two Persons the same number of minutes.
The Functional Requirement makes a huge difference between numerical endorelations that are functional and numerical endorelations that are not functional and this difference is why functions "are widely used in science, and in most fields of mathematics." ${ }^{21}$ and why functions will be the only numerical endorelations $R B C$ will be dealing with.

EXAMPLE 2.4. In contrast with the numerical endorelation in ExamPLE 1.19 (Page 78), the numerical endorelation given by the table

Left-numbers:	Right-numbers, if any, the left-numbers are related to:
1	2
2	
3	4
2	4

is a function.
With relations, there is often no strong reason for deciding up front which items should be left-items and which items should be right-items.
On the other hand, when dealing in the real world with input/output devices ${ }^{22}$, I/O device for short, that is with what happens to be the exact real world embodiments of functions, there usually is little doubt what should be left-numbers and what should be right-numbers. Hence:

Instead of:	Language for functions (I) $R B C$ will employ:
left-number	input-number or input for short.
right-number.	output-number or output for short

Moreover, instead of saying that a function relates a left-number to a right-number or that the right-number is related by the function to the left-number, $R B C$ will say that the function returns the output-number for the input-number - which is also standard.
input/output device
I/O device
input-number
input
output-number
output
return

[^50]The Functional Requirement can then be restated as:

Definition 2.1 (Restated) Functional Requirement

Given an input-number,
A function cannot return more than one output-number.
or, in other words,
A function can return no more than one output-number.
or, still in other words,
A function can return at most one output-number .

To make perfectly clear what functions can do and what functions cannot do, here are the answers to the two questions very frequently asked about functions:
i. Does a function have to return output-numbers? In the real world, there is nothing to force functions to return an output-number for each and every single input-number .

Of course, you might say that no tax $=\$ 0.00$ so this may not be a very good example.

EXAMPLE 2.5. Even though incomes below the minimum income are not related to any tax, the income tax meets the ?? and thus "income tax is a function of income ".

In other words, a function may or may not return an output-number for a given input-number.

EXAMPLE 2.6. The relation in which -23.56 is related to +101.73 and no other left-number is related to any right-number meets the functional requirement and is thus a function.

But while in the real world, but outside of rigourous Mathematics, the Functional Requirement is what is normally used to define a function

Language 2.1 In rigorous Mathematics, functions cannot be allowed to return no output-number because of pathological cases and so, in rigourous Mathematics, the word domain is introduced
to refer to the collection of those input-numbers that are related to some output-number .
Here again, though - see LANGUAGEE 1.2, the curious reader should keep in mind that in other texts domain may be used in place of source.

However, inasmuch as $R B C$ will never get anywhere close to pathological cases:

Agreement 2.1 In this text, given an input-number, a function may very well return no output-number.
ii. May a function return identical output-numbers for different ? In the real world, there is no reason to prevent functions from returning the same output-number for different input-numbers.

EXAMPLE 2.7. A business may be looked upon as the relation given by the table of its profits/losses over the years:

Year	Profit/Loss
1998	+5000
1999	-2000
2000	
2001	+5000
2002	-2000
2003	-1000
2004	
2005	+5000

Even though the same +5000 occurred in 1998, 2001, and 2005 the business satisfies the ?? and thus "profit/loss is a function of year ".

In other words, a function may or may not return the same output-number for several different input-numbers .
2. Language for functions. Since functions are what Calculus deals with, it is of course necesssary for the calculus language to include
f
\qquad
$f(x)$
Reverse Polish Notation
RPN
input-output notation
I-O notation
equality notation
arrow notation
arrow-equality notation

And just in case you don't have color pens.

Even Hewlett-Packard was eventually forced to give up on RPN for its calculators!

While quite standard, \xrightarrow{f} is not (yet?) standard in. standard CALCULUS books.
language for functions.

i. Naming generic functions.

- f as well as \xrightarrow{f} denotes a generic function. together with
- x as a global variable for input-numbers,
- y as a global variable for output-numbers,

Then, the notation $\boldsymbol{f}(\boldsymbol{x})$, to be read f of \boldsymbol{x}, is the standard notation for the output number, if any, that the function f returns for x.

CAUTION 2.1 Even though, because $R B C$ is employin color boxes, $R B C$ could just employ $f x$ instead of $f(x), R B C$ will still employ parentheses because that's what is done by absolutely everybody.

Language 2.2 Actually, there is a parenthesis-free notation called the Reverse Polish Notation ${ }^{a}$, or RPN for short, in which, instead of $f(x)$, the output-number returned by a function f for x is written $x f$-without parentheses.

The reason $R B C$ is not employing the RPN is only that, unfortunately, about no one in the mathematical world employs the RPN and having readers forced to switch sooner or later would be quite uncalled for.
${ }^{a}$ https://en.wikipedia.org/wiki/Reverse_Polish_notation

ii. Functional notations.

Inasmuch as functions are central to Calculus, there are many different things to do with functions and so it should not come too much as a surprise that there are several ways to write functions depending on what's to be done:

DEFINITION 2.2 The input-output notations ${ }^{a}$, I-O notations for short, which say that the function f returns the output-number y_{0} for the input-number x_{0} are:

- For computing purposes, the old equality notation $f\left(x_{0}\right)=y_{0}$ has no rival,
- For conceptual purposes, the modern arrow notation $x_{0} \xrightarrow{f} y_{0}$
alternate arrow notation send
capital script letters has no rival either,

And so, for practically every purposes, $R B C$ will employ

- The arrow-equality notation $x_{0} \xrightarrow{f} f\left(x_{0}\right)=y_{0}$

```
    'a}\mathrm{ https://en.wikipedia.org/wiki/Function_(mathematics)#Functional_
notation
```

LANGUAGE 2.3 Inasmuch as we read from left to right, the fact that the arrow notation

$$
x \xrightarrow{f} f(x)
$$

starts with x, that is something to be input into a function ... yet to be mentioned, is a bit annoying.
So, there is an alternate arrow notation

$$
f: x \longrightarrow f(x)
$$

read

$$
f \text { sends } x \text { to } f(x)
$$

which is more satisfying inasmuch as the function is mentioned first.
While $R B C$ will not employ this alternate arrow notation, $R B C$ will employ the word send because sending is the mirror image of returning.
iii. Naming given functions. To name functions given in EXAMPLES and DEMOS, as well as "known" functions - to be described later, $R B C$ will employ capital script letters.

EXAMPLE 2.8. The function which sends every single input-number to 0 is "known" as the function $\mathcal{Z E R} \mathcal{O}$.

EXAMPLE 2.9. Say $\mathcal{J O E}$ is the name of our favorite parking meter. Using the arrow notation, we write

$$
x \xrightarrow{\mathcal{J O E}} \mathcal{J O E}(x)
$$

and, if $\mathcal{J O E}$ returns 10 minutes parking time when we pay 25 cents, we can write:
zero (of a function)

- For computational purposes, $\mathcal{J O E}(25$ cents $)=10$ minutes
- For conceptual purposes, 25 cents $\xrightarrow{\mathcal{J O E}} 10$ minutes
- For any purposes, 25 cents $\xrightarrow{\mathcal{J O E}} \mathcal{J O E}(25$ cents $)=10$ minutes
- For plotting purposes, $\langle 25$ cents, 10 minutes \rangle

Usually, though, $R B C$ will not include units in either inputs or outputs.
EXAMPLE 2.9. (Continued) In the alternate arrow notation, we would write:

$$
\mathcal{J O E}: x \longrightarrow \mathcal{J O E}(x)
$$

read

$$
\mathcal{J O E} \text { sends } x \text { to } \mathcal{J O E}(x)
$$

and

$$
\mathcal{J O E}: 25 \text { cents } \longrightarrow 10 \text { minutes }
$$

read

$$
\mathcal{J O E} \text { sends } 25 \text { cents to } 10 \text { minutes }
$$

which is symmetrical with

$$
\mathcal{J O E} \text { returns } 10 \text { minutes for } 25 \text { cents }
$$

EXAMPLE 2.10. Given that $\mathcal{J I L \mathcal { L }}$ returned +6.75 for -5.32 , we can write

- For computational purposes, $\mathcal{J I L} \mathcal{L}(-5.32)=+6.75$
- For visual purposes, $-5.32 \xrightarrow{\mathcal{J I L L}}+6.75$
- For any purpose, $-5.32 \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(-5.32)=+6.75$
- For plotting purposes, $\langle-5.32,+6.75\rangle$

And of course, for plotting purposes, $R B C$ will keep on employing the related-pair notation, $\left\langle x_{0}, y_{0}\right\rangle$, from on to be known as Input-Output pair notation, or I-O pair notation for short.
3. Zeros and poles. Even though, as discussed in Section 6 - Zero And Infinity (Page 21), 0 and ∞ are not numbers, 0 and ∞ will play a major role in Calculus. A bit more precisely:
i. A zero of a function ${ }^{23} f$, zero of f for short, will be a finite input for which the function returns the output 0 .

[^51]Indeed, 0 will not be especially important as an input but 0 will play a major role as an output and searching for the zero(s), if any, of a given function will in fact be a major backward problem.
ii. Pole of a function. Given a function f, a pole of f will be a finite input for which the function f returns ∞.
Here again, searching for the pole(s), if any, of a given function will also be a major backward problem.

2 Functions Given By Input-Output Plots

1. Cartesian language for functions. Because $R B C$ is now employing for functions the words input-number and output-number instead of the words left-number and right-number, the language which was introduced in Rulers vs. axes must now be adapted to functions:

Instead of:	LANGUAGE FOR FUNCTIONS (II) $R B C$ will employ:
related-pair unrelated-pair	Input Output -pair or I O -pair for short non Input Output -pair or non I O -pair for short
data-set	Input Output -set or I O -set for short
left-ruler	Input-ruler
Output-ruler	

and the Functional Requirement can be restated in terms of data-plot:

DEFINITION 2.1 (Restated) Functional Requirement
In order for a data-plot to give a function,
No input level-line shall intersect the data-plot more than once.
that is, in other words,
Any input level-line shall intersect the data-plot at most once.

EXAMPLE 2.11. Given the data-plot

since there is at least one input level-line that does intersect the data-plot more than once, the data-plot does not give a function and we cannot employ the word IO-plot instead of the word data-plot.

EXAMPLE 2.12. Given the data-plot

since no input level-line intersects the data-plot more than once, the data-plot does give a function and we can employ the word I O-plot instead of the word data-plot.

By discrete functions, $R B C$ will mean functions given by an I Oplot.
2. Solving forward problems. Solving a forward problem for a locate function given by an I O -plot, that is locating the output, if any, that the function returns for a given input, goes of course exactly the same way as solving a forward problem for a relation given by a data-plot-still keeping in mind that Data-plots are sparse:

Procedure 2.1 To get $f\left(x_{0}\right)$ for x_{0} when f is given by an I O -plot,
i. Left-mark x_{0},
ii. Draw an input level-line through x_{0},
iii. Mark the relating dot at the intersection, if any, of the input level-line with the I-O plot,
iv. Draw an output level-line through the relating dot (if any),
v. Read $f\left(x_{0}\right)$ where the output level-line intersects the output ruler,
vi. Format the input-output pair according to Procedure 1.5-right-number for a left-number (data-set (Page 90)

i. We left-mark -2.5 ,
ii. We draw an input level-line through the -2.5 mark,
iii. We mark the relating dot at the intersection of the -2.5 level-line with the I O-plot
iv. We draw an output level-line through the marked relating dot,
v. We read $\mathcal{J I M}(-2.5)$ where
 the output level-line intersects the output ruler: +20

Demo 2.1b

i. We left-mark +0.7 ,
ii. We draw an input level-line through the +0.7 mark,
iii. There is no relating dot at the intersection of the +0.7 level-line with the 1 O -plot,
iv. $\mathcal{J I M}$ does not return any output for +0.7

A function given by an $I-O$ plot cannot of course return ∞.
3. Solving backward problems Solving backward problems, that is locating the input(s), if any, for which the function returns a given output, goes again exactly the same way as with solving ??, again keeping in mind that Data-plots are sparse:.

Procedure 2.2 To get x_{0} for a given y_{0} when f is given by an I O -plot
i. Tickmark y_{0} on the output ruler,
ii. Draw an output level-line through y_{0},
iii. Mark the relating $\operatorname{dot}(s)$, if any, where the output level-line intersects the I O-plot
iv. Draw an input level-line through each marked relating dot, v. Read x_{0} where the input level-line(s) intersect the input ruler.

i. We mark the output-number -30 on the output ruler,
ii. We draw an output level-line through the mark,
iii. We mark the plot $\operatorname{dot}(\mathrm{s})$, if any, at the intersection of the output level-line with the 10 -plot iv. We draw an input level-line through the relating $\operatorname{dot}(\mathrm{s})$, if any, v. The input-number(s), if any, is/are at the intersection(s), if any, of the input level-line(s), if any, with the input ruler: -4

Demo 2.2b $\mathrm{M} \mathcal{A E}$ being given
by the । 0 -plot by the I O -plot

Get the input(s) , if any, for which $\mathcal{M} \mathcal{A E}$ returns the output -30 .
i. We mark the output-number -30 on the output ruler, ii. We draw an output level-line through the mark,
iii. We mark the plot $\operatorname{dot}(\mathrm{s})$, if any, at the intersection of the output level-line with the 1 O -plot iv. We draw an input level-line through each relating $\operatorname{dot}(\mathrm{s})$, if any, v. The input-number(s), if any, is/are at the intersection(s), if any, of the input level-line(s), if any, with the input ruler: $-4,+3,+5$

Demo 2.2c

$\mathcal{S A L L Y}$ being given by the I O-plot
 for which $\mathcal{S} \mathcal{A} \mathcal{L} \mathcal{Y}$ returns the output -62.5 .
pole
i. We mark the output-number -62.5 on the output ruler, ii. We draw an output level-line through the mark,
iii. We mark the plot $\operatorname{dot}(\mathrm{s})$, if any, at the intersection of the output level-line with the I O-plot iv. There is no intersection therefore there is no input level-line through the relating $\operatorname{dot}(\mathrm{s})$, if any,
v. The input-number(s), if any,

 is/are at the intersection(s), therefore there is no input-number.
4. Zeros. The fact that backward problems usually have no solution because I O-plots are sparse is particularly unfortunate when we are looking for the zero(s) of a given function, that is the inputs for which the function returns 0 as output.

And, even though ?? (?? ??, ??), a zero is a regular input.
However, with functions given by I-O plots, $R B C$ will have to keep even more seriously in mind that ?? (?? ??, ??).

EXAMPLE 2.13. The function $\mathcal{E M M Y}$
given by the I-O set

has two zeros

but it certainly looks like $\mathcal{E} \mathcal{M} \mathcal{M Y}$ also has a zero between -3 and -4
5. Poles. An even more important backward problem will be locating the pole(s) if any, of a function, that is the inputs for which the function
returns ∞ as output.
Of course, a pole is not a regular input since a function given by a I-O plot cannot have pole(s) since all the outputs are medium-size numbers. Yet, I-O plots can hint at possible pole(s).

EXAMPLE 2.14. It might seem that the I-O set

but of course the I-O set could equally well be almost anything, for instance

6. Discrete Calculus. Calculus is To See Change but there are several difficulties with discrete functions:
i. Since collections of left numbers are sparse, the changes with discrete functions are not gradual as the relating-dots are therefore also sparse. In fact, discrete functions cannot return any output for most inputs.
dot-interpolate
intermediate relating dot
So, while the Discrete Calculus ${ }^{24}$ which deals with discrete functions is a very important part of Mathematics, $R B C$ discussed functions given by I O-plots only for introductory purposes and will deal only with functions where the changes are mostly gradual.
ii. Nevertheless, it is worthwhile saying a few words about dot-interpolation ${ }^{25}$, that is the creation of intermediate relating dots. The trouble with dot-interpolations, though, is that just about anything can happen with intermediate relating dots:
a. There is no guarantee that the dot-interpolated I O -plot will still meet the ?? (?? ??, ??).

Example 2.15. The I O -plot in Example 2.3 (Page 94),

meets the ?? (?? ??, ??) but:

[^52]while with the blue intermediate relating dots, the new data-set

still gives a function,
with the red intermediate relating dots, the new data-set

does not give a function any more.
b. Even wnen the dot-interpolated I O-plot does give a function, that function can be just about any function

Example 2.16. In the case of the I O -plot in Example 2.3 (Page 94)

the following two dot-interpolations both give a function but

While the intermediate relating dots could of course be:

the intermediate relating dots could just as well be:

In fact, how to dot-interpolate an I O-plot is not at all a simple matter and there are many methods for coming up with likely outputs for missing intermediate inputs ${ }^{26}$.
iii. Another difficulty with I O -plots is that functions given by I Oplot can involve only finite numbers whereas, in sciences and engineering, Calculus needs to deal also with:

- infinitesimal numbers in order to consider the neighborhoods of given finite numbers to take experimental imprecision into account, and
- infinite numbers in order to consider changes in the long haul.

Since only pairs of finite numbers can be plotted, when the given input
is inputs near infinity, an I O -plot cannot provide any information about the outputs for inputs near infinity, namely large-size input-numbers .
However, occasionally, the I O -plot can hint at what the function might return for inputs near infinity

EXAMPLE 2.17.

[^53]It might seem that the I O-plot

hints at -20 for inputs near ∞

but the I O-plot could equally well be almost anything, for instance

EXAMPLE 2.18.

It might seem that the I O-plot

hints at $+\infty$ for inputs near ∞ :

curve
extended Cartesian setup
offscreen
finite input
infinite input
finite output
infinite output
Mercator view
but the I O-plot could equally well be almost anything, for instance

Thus, the Discrete Calculus cannot really deal with changes.

3 Functions Given By Curves

Don't worry, you don't have to know the calculus meaning of the word curve and you can go by just the ordinary English meaning.

As Descartes might have drawn it had he thought of infinite numbers.

In order for $R B C$ to deal with changes, functions will have to be given by a curve ${ }^{27}$. but then the Cartesian setup will have to be an extended Cartesian setup, that is a Cartesian setup that:

- Employs 2 pt compactifications of qualitative rulers in order to picture neighborhoods including a neighborhood of 0 and a neighborhood of 0
- Includes an offscreen space around the screen to provide a neighborhood of ∞ and a neighborhood of ∞ with:
- The upper cutoffs for finite inputs lined up vertically with the left and right sides of the screen so that finite inputs will be below the screen and infinite inputs will be in a neighborhood of ∞ below the offscreen,
- The upper cutoffs for finite outputs lined up horizontally with the bottom and top of the screen so that finite outputs will be left of the screen and infinite ouiputs will be in a neighborhoods of ∞ left of the offscreen.

1. Mercator view. By far the simplest way to picture an extended Cartesian setup is by way of a Mercator view ${ }^{28}$ which is just a flat view

[^54]
global graph onscreen graph offscreen graph

Then, whenever a given curve meets the Functional Requirement (Definition (Restated) 2.1, Page 102), $R B C$ will employ global graph for the whole curve and:

- onscreen graph for the part of the curve that is on the screen,
- offscreen graph for the part of the curve that is offscreen,

EXAMPLE 2.19. The curve

satisfies the Functional Requirement:

and so the curve is the global graph of a function:

The problem is a difficult one and Mercator's solution was the first in a long list ${ }^{29}$.
view is by far the most commonly employed, it is important to be aware of the severe limitations to the information which Mercator views can provide about a function.
i. How much an onscreen graph shows about a function depends very much on the cutoff sizes for finite numbers.
For instance, Mercator views do not necessarily show all the zeros of a function.

EXAMPLE 2.20. The following onscreen graphs of the function $\mathcal{Z A N \mathcal { N }}$ are all at the same scale and differ only by the cutoff size for finite input numbers:
With the cutoff for finite input numbers at 15 , the onscreen graph shows no zero

With the cutoff for finite input numbers at 20 , the onscreen graph shows one zero:

[^55]With the cutoff for finite input numbers at 25 , the onscreen graph shows two zeros:

With the cutoff for finite input numbers at 30 , the onscreen graph shows three zeros:

In other words, the Mercator views of a given function are not conclusive as to the zeros of that function.
ii. How much an onscreen graph shows about a function depends also very much on the cutoff size for finite outputs.

For instance, another very important backward problem will be locating the pole(s), if any, of a function, that is those inputs for wich the function returns ∞ but of course Mercator views cannot do that.

EXAMPLE 2.21. The following onscreen graphs of the function $\mathcal{C O T Y}$ are all at the same scale and differ only by the cutoff size for finite output numbers:

With the cutoff size for finite output numbers at 500 , the onscreen graph does not show whether or not there is an input between - 15 and +15 whose output is larger than the output of neighboring inputs:

With the cutoff size for finite output numbers at 1500 , the onscreen graph still does not show whether or not there is an input between -15 and +15 whose output is larger than the output of neighboring inputs:

With the cutoff size for finite output numbers at 1000, the onscreen graph still does not show whether or not there is an input between -15 and +15 whose output is larger than the output of neighboring inputs:

With the cutoff size for finite output numbers at 2000 , the onscreen graph does show there is an input between -15 and +15 whose output is larger than the output of neighboring inputs:

In other words, the Mercator views of a given function are not necessarily conclusive as to the inputs whose output is larger than the output of nearby
inputs.
Altogether then:

CAUTION 2.2 On-screen graphs are not necessarily conclusive as to the output(s), if any, for finite inputs.

Finally, since the purpose in this Part I - Functions Given By Data (Page 63) is introductory, $R B C$ will employ curves to give functions but eventually, in Part II - Calculatable Functions (Page 197) and after, $R B C$ will employ curves only to picture functions that will have been given otherwise. In any case,

CAUTION 2.3 Functions given by curve are not necessarily simple and certainly not as simple as those employed here.

3. Compact views.

In order to show the off-screen graph which shows the 'behavior' of a function near poles, if any, and near infinity, $R B C$ will employ several different compact views, that is views in which one both axes are compactified.

To see why axes rather than rulers, just try to draw rulers in any of the compact views that follow.
i. We can get a tube view by compactifying the input axis:

donut view

ii. We can get another kind of tube view by compactifying the output axis:

iii. We can get two kinds of donut views by compactifying the input axis and the output axis one after the other:

Input axis then output axis
iv. We can get a Magellan view by compactifying the input axis and the output axis simultaneously:

Magellan views are particularly good at showing why a Mercator view cannot give a function: different functions can have the same onscreen graph but different off-screen graphs.

EXAMPLE 2.22. The onscreen graph

smooth continuation
is the onscreen graph of any of the following functions viewed in Magellan view

as well as, in fact, many, many others.

OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR
 4. OK so far - OK so far - OK so far - OK so far .
 OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR

So, in order for a curve to be the onscreen graphof a function, $R B C$ will make the following

Agreement 2.2 With functions given by curve, the upper cutoff size for finite input and finite outputs will be such that the off-screen graph is simply a smooth continuation of the onscreen graph. (However, with other types of functions, there are different kinds of continuations as, for instance, with the 'periodic' functions to be investigated in Vol. II.)

EXAMPLE 2.23.
Given the onscreen graph in Example 3.55 (Page 177):

by Agreement 2.2 - (Page 122), the global graph can only be

pole
parity
even pole odd pole
5. Pole of a function. See ?? (?? ??, ??)

Given a function f, a pole of f is a medium input whose height-size is 〈large, large〉. We will distinguish two kinds of poles according to their parity:

We will distinguish two kinds of poles according to their parity:

- An even pole is a pole whose height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$.

EXAMPLE 2.24. For the function the medium input +6 is an even
f
given by the global graph

pole because:

- the outputs for inputs near +6 are all large,
- height-sign f near $+6=\langle-,-\rangle$ (Same signs.)
- An odd pole is a pole whose height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$.

EXAMPLE 2.25. For the function
f given by the global graph

the medium input +-4 is an odd pole because:

- the outputs for inputs near -4 are all large,
- height-sign f near $-4=\langle+,-\rangle$ (Opposite signs.)

6. Interpolating plots into curves?

7. Curve-Interpolating I-O plots. The next step beyond dot-interpolations of data-plots is curve-intepolations of data-plots ${ }^{30}$.

However, even though curve-interpolating data-plots tends to be much favored, curve-interpolation is even more risky than dot-interpolation.

THEOREM 2.1 In the absence of suplementary information, a function given by an I-O plot cannot be extended to a single function given by a curve.

Proof. Take an intermediate input and pair it with two different outputs. We can then curve-interpolate through either one of the two pairing dots.

EXAMPLE 2.26. Suppose the function $\mathcal{R I N O}$ was given by the following input-output table and therefore the following plot:

[^56]Now, how should we join these plot dots? For instance:

And in fact, too many plot points can make it impossible to join them smoothly.
EXAMPLE 2.27. The function $\mathcal{S I N E}$ belongs to Volume II, but the point here is Strang's Famous Computer Plot of $\mathcal{S I N E}{ }^{31}$:

How are we to "join smoothly"?

[^57]Even mathematicians and scientists keep being amazed at the behavior of some of the functions that keep coming up.
input level-band median line width

Basically, just about anything can happen.
8. Basic Expository Problem. So far, the reader would have every right to wonder how there could possibly be anything particularly complicated in dealing with functions but there are in fact many, many, functions that are unbelievably "complicated" (For a few examples, see https://www. google.com/search?q=Nowhere+continuous+function\&client=firefox-b-d\& source=lnms\&tbm=isch\&sa=X\&ved=2ahUKEwiY30bx-9b9AhWeMlkFHZFDC-cQ_ AUoAXoECAEQAw\&biw=1012\&bih=833\&dpr=1.).

The difficulty comes from the fact that (i) there is nothing in the ?? to prevent any outputs from being returned by a function for any inputs and so, in particular, nothing to prevent abrupt, huge, differences among outputs returned for even inputs that are near a given input, and that (ii) it is impossible to define anything like "complicated" functions-say for mathematicians-as opposed to "simple" functions for the rest of us.

The expository problem, then, is::

- If, to paraphrase Dudley, general statements about functions are rigorous so as to apply to all functions, including "complicated" functions-which the reader is not likely to encounter anytime soon, the reader is not likely, in Dudley's words, to "see what is really going on".
On the other hand,
- Even if general statements about functions are worded so as to apply only to a few kinds of"simple" functions, then how is the reader to know when the functions will have become just too "complicated" for the general statement still to apply?

Our way out of this expository problem will be to agree that:
AGREEMENT 2.3 All general statements about functions will apply to all functions in this text. (As for functions in other texts, these statements may or may not apply.)

4 Local Graphs

We first need to introduce the equivalent of input level-lines and output level-lines for neighborhoods of given points.

1. Input level-band. An input-level band is "made up" of the input-level lines for the inputs in the neighborhood of the given input point.

In particular, the median line of the input level-band is the input level-line of the input point and the width of the input level-band is the width of
the neigborhood of the given input point ..
The Procedure, though, depends partly on whether the given input point is a given number x_{0} or is ∞ :

Procedure 2.3 To get the input level-band for a neighborhood of an input point.

- When the input point is a given number x_{0} :
i. Draw the input level-line for x_{0},
ii. Thicken the input level-line for x_{0} to an input level-band for the neighborhood of x_{0}
- When the given point is ∞ :
i. Draw the input level-lines for $+\infty$ and for $-\infty$
ii. Thicken the input level-lines for $+\infty$ and $-\infty$ into half level-bands corresponding to the width of the half neighborhoods of $+\infty$ and $-\infty$

Demo 2.3a To get the input level-band for a neighborhood of the input number -31.6
i. We draw the input level line for -31.6
ii. We mark a neighborhood of -31.6 on the input ruler,
iii. We draw the input level-band with the width of the neighborhood of -31.6 ,

output level-band median line width

Demo 2.3b To get the input level-band for a neighborhood of the input ∞
i. We draw the input level lines for $+\infty$ and $-\infty$
ii. We thicken ∞ into a neighborhood of ∞ (In Mercatot view),
iii. We thicken the input level-lines for $+\infty$ and $-\infty$ into rectangles corresponding to the width of the half neighborhoods of $+\infty$ and $-\infty$

In the above Mercator view, there appears to be two level-bands for ∞ but a tube view shows they are only the two sides of the input levelband near ∞ :

2. Output level-band.

CAUTION 2.4

An output level-band is to a neighborhood of an output point, what the output level-line is to the output point itself.

In other words, the output-level band is "made up" of the output-level lines for the outputs in the neighborhood of the given output point. In particular, the median line of the output level-band is the output levelline of the output point and the width of the output level-band is the width of the neigborhood.

The Procedure, though, depends partly on whether the given output point is a given number y_{0} or ∞ :

Procedure 2.4 To get the output level-band for a neighborhood of an output point.

- When the output point is a number y_{0} :
i. Draw the output level-line for y_{0},
ii. Thicken the output level-line for y_{0} into an input levelband for the neighborhood of y_{0}
- When the given output point. is ∞ :
i. Draw the output level-lines for $+\infty$ and $-\infty$,
ii. Thicken ∞ into a neighborhood of ∞ (In Mercaator view),
iii. Thicken the output level-lines for $+\infty$ and $-\infty$ into rectangles corresponding to the width of the half neighborhoods of $+\infty$ and $-\infty$

Demo 2.4a

To get the output level-band for a neighborhood of the output number -7.83
i. We draw the output level line for -7.83
ii. We mark a neighborhood of -7.83 on the output ruler,
iii. We draw the output level-band with the width of the neighborhood of -7.83 ,

Demo 2.4b

To get the output level-band for a neighborhood of the output point ∞
i. We draw the output level lines for $-\infty$ and $+\infty$
ii. We thicken ∞ into a neighborhood in Mercator view,
iii. We thicken the output level lines for $-\infty$ and $+\infty$ into rectangles the width of the half neighborhoods
of $-\infty$ and $+\infty$

In the above Mercator view, there appears to be two level-bands for ∞ but a tube view shows they are only the two sides of the level-band near ∞ :

3. Local frame. However, just like the plot dot for an ordinary input x_{0}, that is for an input-output pair of numbers $\left(x_{0}, y_{0}\right)$, is at the intersection of:

- the input level-line for the input number x_{0}
- the output level-line for the output number y_{0},
similarly, the local graph for a neighborhood of a point will be within the local frame which is the intersection of:
- the input level-band for the neighborhood of the input point
- the output level-band for the neighborhood of the outputpoint
the input level-band and the output level-band:
Procedure 2.5 To get the local frame for an (point, point):

$$
\left(x_{0}, y_{0}\right) \text { or }\left(x_{0}, \infty\right) \text { or }\left(\infty, y_{0}\right) \text { or }(\infty, \infty)
$$

i. Get the input level-band for x_{0} or ∞
ii. Get the output level-band for y_{0} or ∞
iii. Frame the intersection of the input level-band and the output level-band

Demo 2.5a

To get the local frame for the input-output pair $(-3.16,-7.83)$
i. We get the input level band for -3.16
ii. We get the output level band for -7.83
iii. We local frame the intersection of the input level-bands for -3.16 and -7.83

Demo 2.5b

To get the local frame for the input-output pair $(-3.16, \infty)$
i. We get the input level band for -31.6
ii. We get the output level band for ∞
iii. We get the local frame for the intersection of the input level-band for -31.6 and the output level-band for ∞

But then Magellan views are a lot harder to draw.

In the above Mercator view, there appears to be two local frames for ∞ but a donut view shows they are only the two halves of the same local frame.

Demo 2.5c

To get the local frame for the input-output pair of numbers $(\infty,+71.6)$
i. We get the input level band for ∞
ii. We get the output level band for +71.6
iii. We get the local frame for the intersection of the input level-band for ∞ and the output level-band for +71.6

In the above Mercator view, there appears to be two local frames for ∞ but a donut view shows they are only the two halves of the same local frame.

DEMO 2.5d

To get the local frame for (∞, ∞)

4. Local graph near a point Just the way a plot dot shows the inpui-output pair for a given input number, a local graph will show the inpui-output pairs for the input numbers in a neighborhood of a given input point:

Procedure 2.6 To get the local graph for inputs in a neighborhood of a given point when the function is given by a global graph
i. Mark a neighborhood of the point on the input ruler,
ii. Draw the input level-band for the neighborhood of the point using ?? ?? - ?? (??),
iii. The local graph near the point is at the intersection of the input level-band and the global graph.

While the procedure is the same regardless of the nature of the point, we will look at the difference cases separately

5. Local graph near x_{0}.

Demo 2.6a

To get the local graph near -3 of the function $\mathcal{M A R E}$ whose global graph is

i. We mark a neighborhood of -3 on the input ruler,
ii. We draw the input level band for the neighborhood of -3 ,
iii. The local graph of $\mathcal{M A R E}$ near -3 is at the intersection of the input level band with the global graph,

Demo 2.6b

To get the local graph near the pole +5 of the function $\mathcal{J E N}$ whose global graph is 40 outputs

i. We mark a neighborhood of +5 on the input ruler,
ii. We draw the input level band through the neighborhood of +5 , iii. The local graph of $\mathcal{J E N}$ near +5 is the intersection of the input level band with the global graph,

6. Local graph near ∞.

Keep in mind that even for large inputs, a function may return outputs of any qualitative size, medium-size: infinite or infinitesimal.

Demo 2.6c

To get the local graph near ∞ of the function $\mathcal{R E N}$ whose global graph is

i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph of $\mathcal{R E N}$ near ∞ is the intersection of the input level band with the global graph,

Demo 2.6d

To get the local graph near ∞ of the function $\mathcal{M I N \mathcal { A }}$ whose global graph is

i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph of $\mathcal{M I N} \mathcal{A}$ near ∞ is the intersection of the input level band with the global graph,

Demo 2.6e

To get the local graph near ∞ of the function $\mathcal{R H E \mathcal { A }}$ whose global

i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. The local graph of $\mathcal{R H E A}$ near ∞ is the intersection of the input level band with the global graph,

BeginWORKzone - BeginWORKzone - BeginWORKzone - BeginWORKzone - BeginWORKzone

7. Facing the neighborhood.

There is no reason to expect the local behavior of a function to be the same on both sides of a input point, be it x_{0} or ∞, see Subsection 2.3 - Solving backward problems (Page 105)) and Subsection 2.5 - Poles (Page 108)).

In order to deal separately with each side of a neighborhood of a given point, we first need to state precisely which side of the given point is going to be LEFT of the given point and which side of the given point is going to be RIGHT of the given point.

EXAMPLE 2.28. Given a neighborhood of the number +3.27 , JILL can face the center of the neighborhood and then:

- what is to JILL's left will be what is LEFT of +3.27
and
basic format angle
- what is to JILL's right will be what is RIGHT of +3.27 .

EXAMPLE 2.29. Given a neighborhood of ∞, JILL cannot face the center of the neighborhood and so, using a Magellan circle, she must imagine JACK facing a neighborhood of ∞ and then:

- what is to JACK's left will be what is LEFT of ∞ and
- what is to JACK's right: will be what is RIGHT of ∞

8. Local code. in order to describe separately the 'local behavior' on each side of the given input, we will use the following format:

DEFINITION 2.3 To code the features of the local graph near a given point, we will write the codes for the feature on each side between two angles with a comma to separate the behaviors on the sides of the neighborhood of the given point:

Features for nearby inputs
Features for nearby inputs
LEFT of the given point
will be coded
RIGHT of the given point will be coded
LEFT of the comma

EXAMPLE 2.30. When the local graph is near a number, JILL can face the center of the neighborhood:

EXAMPLE 2.31. When the local graph is near ∞ and since JILL can only imagine JACK facing infinity on the far side of a Magellan circel:

Chapter 3

The Looks Of Functions

Height, 141 • Height-continuity, 147 • Local Extremes, 154 • Slope, 159 • Slope-continuity, 162 • Concavity, 162 • Concavity-continuity, 166 • Feature Sign-Change Inputs, 170 • Essential Feature-Sign Changes Inputs, 181 • EmptyA, 191 - EmptyB, 192 • Start, 193.

Finally, even though functions are usually not given by way of curves but by way of Input-Output Rules (Chapter 4, Page 197), in this chapter and the next one we will continue to give functions by way of curves because this will allow us to see all the outputs returned by the function for all the inputs in a neighborhood of a given input.

1 Height

The height of a function f at a given number x_{0} is just the output $f\left(x_{0}\right)$ provides almost no information about the graph of the function.

EXAMPLE 3.1. To say that the height of a function at +82.73 is -3.27 gives

which could come from any of the following functions

... and from many more.

1. Local height near a given point. Given a function f and given a point, the height of f near x_{0} is
we want a thick version of the height of f at x_{0} that is the height of f near x_{0}.

Example 3.2. Given a function f, to say that

Height f at $+3=-12$ says

Local height f near $+3=-12 \oplus h$
sats

As will become clear why, though, we have to introduce and discuss the sign and the size of the local height separately.
2. Local height-sign. The local height-sign of f near x_{0} is the sign, + or - , of the outputs for nearby inputs on each side of the given input.

Procedure 3.1 To get the local height-sign near x_{0} of a function given by a curve,

Demo 3.1 To get the local height-sign near +5 for the function IAN from the local graph near +5

i. We get from the local graph the sign of the outputs for nearby inputs on each side of +5 :

- The sign of the outputs

$$
\text { left of }+5 \text { is }-
$$

- The sign of the outputs
right of +5 is +

3. Height-size The local height-size of f near a given input is the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of the given input.

Procedure 3.2 To get the height-size near a given input of a function from its global graph,
i. Highlight the local graph near the given input using ?? ?? - ?? (??)
ii. Mark a neighborhood of the given point
iii. Get from the local graph the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of the given input,
iv. Code height-size f according to ?? ?? - ?? (??)

Demo 3.2a Get height-size near +5 for the function IAN from the local graph near +5

i. We get from the local graph the qualitative size, large, medium or small, of the outputs for nearby inputs on each side of +5 :

- The size of the outputs left of +5 is
medium
- The size of the outputs right of +5 is medium
ii. We code the height-size:
height-size $I A N$ near $+5=\langle$ medium, medium \rangle

Demo 3.2b Get height-size near ∞ for the function IAN from the local graph near ∞

parity
even zero
odd zero qualitative size, large, medium or small, of the outputs for nearby inputs on each side of
ii. We code the height-size: large, small \rangle ∞ :

- The size of the height left of ∞ is large
- The size of the height right of ∞ is small

Demo 3.2c For the function

the Magellan input ∞ is a zero because:
the outputs for nearby inputs, both inputs right of ∞ and inputs left of ∞, are all small,
4. Parity of zeros and poles The height-size of a zero of a given function f is \langle infinitesimal, infinitesimal \rangle.

We will distinguish two kinds of zeros according to their parity:
An even zero is a zero whose height-sign is either $\langle+,+\rangle$ or $\langle-,-\rangle$.
An odd zero is a zero whose height-sign is either $\langle+,-\rangle$ or $\langle-,+\rangle$.
$x_{\infty \text {-height }}$
$x_{0 \text {-height }}$ height

EXAMPLE 3.3. For the function f given by the global graph

the medium input +6 is an even zero because:

- the outputs for inputs near +6 are all small,
- height-sign f near $+6=\langle-,-\rangle$ (Same signs.)

EXAMPLE 3.4. For the function f given by the global graph

the medium input +6 is an odd zero because:

- the outputs for inputs near +6 are all small,
- height-sign f near $+6=\langle+,-\rangle$ (Opposite signs.)

5. Local height near ∞ The concept of height provides us with conveniently systematic names:

- For a pole: $\boldsymbol{x}_{\infty \text {-height }}$
- For a zero: $\boldsymbol{x}_{0 \text {-height }}$

The height near ∞

is -large for inputs left of ∞ and -small for inputs right of ∞
Given a function f, we will thicken the output $A T$ a given input, be it x_{0} or ∞, into the height near the given input.

EXAMPLE 3.5.

The output at +3

is -12

The height near $+3 \quad$ The height near ∞

is $-12 \pm$ small

Height height continuous at x_{0}

2 Height-continuity

The first kind of abrupt change that can occur is in the size of the outputs for nearby inputs.

For instance, we might expect that the outputs for inputs near a given input will have outputs that are near the output for the given input but, while this is often the case, this is absolutely not necessarily the case.

EXAMPLE 3.6. The function given by the global graph

- Sends +5.33 to a positive number, +4.4
but
- Sends all other numbers to negative numbers.

1. Height-continuity at $\boldsymbol{x}_{\mathbf{0}}$. Given a medium-size input x_{0}, we tend to expect that functions will be Height height continuous at $\boldsymbol{x}_{\mathbf{0}}$, that is that the outputs for nearby inputs will themselves be near $f\left(x_{0}\right)$, the output at x_{0}.
height discontinuous
height discontinuous at x_{0}
jump
hollow dot

EXAMPLE 3.7.
The function

EXAMPLE 3.8.
The function

is height continuous at +13.06 because:

- the output at +13.06 is -52.42 and
- the outputs for all nearby Inputs, both left of +13.06 and right of +13.06 , are themselves near -52.42 .
is height continuous at -18.71 because
- the output at -18.71 is -12.28 and
- the outputs for all nearby Inputs, both left of -18.71 and right of -18.71 , are themselves near -12.28 .

2. Height-discontinuity at x_{0}. Given a medium-size input x_{0}, a function is height discontinuous at $\boldsymbol{x}_{\mathbf{0}}$ when not all the outputs for nearby inputs are near $f\left(x_{0}\right)$, the output at x_{0}.

- A function can be height discontinuous at x_{0} because the function has a jump at x_{0}, that is because the outputs for nearby inputs on one side of x_{0} are all near one medium-size output while all the outputs for nearby inputs on the other side of x_{0} are near a different medium-size output.

Since we use solid dots to represent input-output pairs, we will use hollow dots for points that do not represent input-output pairs.

EXAMPLE 3.9.

The function

is height discontinuous at +3 begap cause the function has a jump at +3 that is:

- the outputs for nearby inputs right of +3 are all near +15 ,
but
- the outputs for nearby Inputs left of +3 are all near +13 .

EXAMPLE 3.10.

The function

is height discontinuous at -9 because the function has a double jump at -9 that is:

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- the output for -9 itself is +11.6 .
- A function can be height discontinuous at x_{0} because the function has a gap at x_{0}, that is because the function does not return a medium-size output for x_{0}

EXAMPLE 3.11.

The function

is height discontinuous at -9 because the function has a gap at -9 that is:

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- there is no output for -9 itself.

EXAMPLE 3.12.

The function

EXAMPLE 3.13.

The function whose global graph is

is height discontinuous at +8 not only because the function has a jump at +8 but also because the function has a gap at +8 .
is height discontinuous at +3 because the global graph has a jump at +3 :

- the outputs for nearby inputs right of +3 are all near +15 ,
but
- the outputs for nearby Inputs left of +3 are all near +13 .

EXAMPLE 3.14.
The function whose global graph is

is height discontinuous at -9 because the global graph has a gap at -9 :

- even though the outputs for nearby inputs, both inputs right of -9 and inputs left of -9 , are all near +7.2 ,
- the output for -9 itself is +11.6 .

EXAMPLE 3.15.

The function whose global graph is

is height discontinuous at +8 not only because the global graph has a jump at +8 but also because the global graph has a gap at +8 .
cut-off input on-off function transition function transition

- Actually, height discontinuous functions are quite common in Engineering.

EXAMPLE 3.16. The following on-off functions are both height discontinuous but are different since the outputs for the cut-off inputs are different.

EXAMPLE 3.17. The following transition functions are both height discontinuous but are different since the outputs at the transitions are different.

- And, finally, there are even functions that are height discontinuous every-

Magellan height continuous at
limit
where! (https://en.wikipedia.org/wiki/Nowhere_continuous_function)
$=============O$ OK SO FAR $==============$
$=======$ Begin WORK ZONE $=======$
3. Magellan height-continuity at x_{0}. A function is Magellan height continuous at x_{0} when we could remove the height discontinuity at x_{0} by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan output.

EXAMPLE 3.18. The function in $? ?$ is height discontinuous at -4 because the function has a gap at -4 but Magellan height continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

4. Height-continuity at ∞ The use of nearby inputs instead of the raises a crucial question: Are the outputs for nearby inputs all near the output at the given input?

Any answer, though, will obviously depend on whether or not ∞ is allowed as Magellan input and Magellan output and the reader must be warned that the prevalent stand in this country is that ∞ does not exist and that one should use limits. (For what limits are, see https://en. wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason and certainly for none ever given. ${ }^{1}$

As for us, we will allow ∞ as Magellan input and Magellan output, an old, tried and true approach. See https://math.stackexchange.com/ questions/354319/can_a_function_be_considered_heightcontinuous_ if_it_reaches_infinity_at_one_point and, more comprehensively, https: //en.wikipedia.org/wiki/Extended_real_number_line.

As a backdrop to what we will be doing with Algebraic Functions, we will now show some of the many different possible answers to the above question. For clarity, we will deal with medium-size inputs and medium-size outputs separately from ∞ as Magellan input and Magellan output.

[^58]Keep in mind that we use solid dots to represent input-output pairs as opposed to hollow dots which do not represent input-output pairs.
5. Magellan height-continuity at ∞. A function is Magellan height continuous at ∞ when we could remove the height discontinuity at ∞ by overriding or supplementing the global input-output rule with an input-output table involving ∞ as Magellan input and/or as Magellan output.
EXAMPLE 3.19. The function

is height discontinuous at ∞ but is Magellan height continuous since we could remove the height discontinuity with an input-output table involving ∞ as Magellan input and Magellan output,

EXAMPLE 3.20. The function

is height discontinuous at ∞ but is Magellan height continuous since we could remove the height discontinuity with an input-output table involving ∞ as Magellan input and Magellan output

$$
\begin{array}{cc}
\hline \text { Input } & \text { Output } \\
\hline+\infty & +\infty \\
-\infty & -2^{-}
\end{array}
$$

quasi-height continuous at removable height discontinuity at remove override supplement
6. Quasi height-continuity at x_{0}. A function is quasi-height continuous at x_{0} if the height discontinuity could be removed by overriding or supplementing the global input-output rule with an input-output table.

LANGUAGE 3.1is the standard term but, for the sake of language consistency, rather than saying that a function has (or does not have) a removable height discontinuity at x_{0}, we will prefer to say that a function is (or is not) quasi-height continuous at x_{0}.

EXAMPLE 3.21. The function in Example 3.11 is height discontinuous at -9 but the height discontinuity could be removed by overriding the input-output pair $(-9,+11.6)$ with the input-output table

Input	Output
-9	+7.2

A function can be height discontinuous at x_{0} because the function has a pole at x_{0}.

EXAMPLE 3.22. The function

is height discontinuous at -4 because not only does the function have a gap at -4 but the function has a pole at -4 that is:

- the outputs for nearby inputs, both inputs right of -4 and inputs left of -4 , are all large,
but
- -4 has no medium-size output.

3 Local Extremes

We will often compare the output at a given medium-size input with the height near the given medium-size input.

1. Local maximum-height input. A local maximum-height input is a medium-size input whose output is larger than the height near the medium-size input. In other words, the output at a local maximum-height input is larger than the outputs for all nearby inputs.
local maximum-height input
$x_{\text {maxi-height }}$
local minimum-height input
x_{0} is al local maximum-height input whenever $f\left(x_{0}\right)>f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {max-height }}$ as a name for a local maximum-height input.
LANGUAGE 3.2 is the usual name for a local maximum-height input but $x_{\text {max }}$ tends to suggest that it is the input x that is maximum while it is the output, $f\left(x_{\max }\right)$, which is "maximum".

Graphically, the local graph near $x_{\text {max-height }}$ is below the output-level line for $x_{\text {max-height }}$.

2. Local minimum-height input. A local minimum-height input is a medium-size input whose output is smaller than the height near the given input. In other words, the output at a local minimum-height input is smaller than the outputs for all nearby inputs.
x_{0} is al local minimum-height input whenever $f\left(x_{0}\right)<f\left(x_{0}+h\right)$
$x_{\text {min-height }}$
local extreme-height input

We will use $\boldsymbol{x}_{\text {min-height }}$ as name for a local minimum-height input.

LANGUAGE 3.3 is the usual name for a local minimum-height input but $x_{\text {min }}$ tends to suggest that it is the input x that is minimum while it is its output, $f\left(x_{\min)}\right.$, which is "minimum".

Graphically, the local graph near $x_{\text {min-height }}$ is above the output-level line for $x_{\text {min-height }}$.
EXAMPLE 3.25. The function

EXAMPLE 3.26. The function

has a local minimum at +81.35 because the output at +81.35 is smaller than the outputs for nearby inputs.
has a local minimum at +37.41 because the output at +37.41 is smaller than the outputs for nearby inputs.

3. Local extreme-height input. Local extreme-height input

 are medium-size inputs which are either a local maximum-height input or a local minimum-height input.CAUTION 3.1 can only be medium-size inputs.
4. Optimization problems. Minimization problems and maximization problems (https://en.wikipedia.org/wiki/Mathematical_optimization)
as well as min-max problems (https://en.wikipedia.org/wiki/Minimax) are of primary importance in real life. So,

- It would be pointless to allow ∞ as a local extreme-height input since it cannot be reached in the real world,
- It would be meaningless to allow $+\infty$ as a locally largest output since $+\infty$ is always larger than any output or to allow $-\infty$ as a locally smallest output since $-\infty$ is always smaller than any output.

5. Local extreme We will often compare the output at a given medium input with the height near the given medium input.
6. Local maximum-height input. A local maximum-height input is a medium input whose output is larger than the height near the medium input. In other words, the output at a local maximum-height input is larger than the outputs for all nearby inputs.
x_{0} is al local maximum-height input whenever $f\left(x_{0}\right)>f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {max-height }}$ as a name for a local maximum-height input.

LANGUAGE 3.4 is the usual name for a local maximum-height input but $x_{\text {max }}$ tends to suggest that it is the input x that is maximum while it is the output, $f\left(x_{\max }\right)$, which is "maximum".

Graphically, the local graph near $x_{\text {max-height }}$ is below the output-level line for $x_{\text {max-height }}$.

EXAMPLE 3.27. The function

has a local maximum at -23.07 because the output at -23.07 is larger than the outputs for nearby inputs
local minimum-height input
$x_{\text {min-height }}$

EXAMPLE 3.28. The function

has a local maximum at +4.32 because the output at +4.32 is larger than the outputs for nearby inputs
7. Local minimum-height input. A local minimum-height input is a medium input whose output is smaller than the height near the given input. In other words, the output at a local minimum-height input is smaller than the outputs for all nearby inputs.
x_{0} is al local minimum-height input whenever $f\left(x_{0}\right)<f\left(x_{0}+h\right)$
We will use $\boldsymbol{x}_{\text {min-height }}$ as name for a local minimum-height input.

LANGUAGE 3.5 is the usual name for a local minimum-height input but $x_{\text {min }}$ tends to suggest that it is the input x that is minimum while it is its output, $f\left(x_{\min)}\right.$, which is "minimum".

Graphically, the local graph near $x_{\text {min-height }}$ is above the output-level line for $x_{\text {min-height }}$.

EXAMPLE 3.29. The function

has a local minimum at +81.35 because the output at +81.35 is smaller than the outputs for nearby inputs.

EXAMPLE 3.30. The function

has a local minimum at +37.41 because the output at +37.41 is smaller than the outputs for nearby inputs.
local extreme-height input slope-sign

8. Local extreme-height input. Local extreme-height input

 are medium inputs which are either a local maximum-height input or a local minimum-height input.CAUTION 3.2 can only be medium inputs.
9. Optimization problems. Minimization problems and maximization problems (https://en.wikipedia.org/wiki/Mathematical_optimization) as well as min-max problems (https://en.wikipedia.org/wiki/Minimax) are of primary importance in real life. So,

- It would be pointless to allow ∞ as a local extreme-height input since it cannot be reached in the real world,
- It would be meaningless to allow $+\infty$ as a locally largest output since $+\infty$ is always larger than any output or to allow $-\infty$ as a locally smallest output since $-\infty$ is always smaller than any output.

4 Slope

1. Slope-sign. Inasmuch as, in this text, we will only deal with qualitative information we will be mostly interested in the slope-sign: .

Procedure 3.3 To get Slope-sign near a given input for a function given by a global graph
i. Mark the local graph near the given input
ii. Then the slope-sign is:
/ when the local graph looks like $ノ$ or \nearrow, that is when the outputs
are increasing as the inputs are going the way of the input ruler, \ when the local graph looks like \or
, that is when the outputs are decreasing as the inputs are going the way of the input ruler.
iii. Code Slope-sign f according to ?? ?? - ?? (??)

LANGUAGE 3.6 The usual symbols are + Instead of / and - instead of \backslash but, in this text, in order not to overuse + and - , we will use $/$ and $\backslash .^{2}$

Demo 3.3a Let $H I C$ be the function whose Mercator graph is

and let the given input be +2 . Then to get Slope-sign HIC near +2
i. We get the local graph near the given input:

ii. We then get -The slope sign left of +2 is \backslash -The slope sign right of +2 is \backslash which we code as:

Slope-sign HIC near $+2=\langle\backslash, \backslash\rangle$

Demo 3.3b Let HIP be the function whose Mercator graph is

[^59]
and let the given input be ∞. Then to get Slope sign HIP near ∞
i. We get the local graph near the given input:

ii. We then get that:
-The slope sign left of ∞, that is near $+\infty$, is /
-The slope sign right of ∞, that is near $-\infty$, is \backslash
which we code as:
$$
\text { Slope-sign } H I P \text { near } \infty=\langle/, \backslash\rangle
$$
2. Slope-size In this text, we will not deal with slope-size other than in the case of a 0 -slope input that is an input, be it x_{0} or ∞, near which slope-size is small. This is because 0 -slope inputs will be extremely important in global analysis as finding 0 -slope inputs comes up all the time in direct "applications" to the real world:

EXAMPLE 3.31.The function

EXAMPLE 3.32. The function

has both -17 and ∞ as 0 -slope inputs Only +3.4 is a 0 -slope input.
kink
concavity
concavity-size
concavity-sign

5 Slope-continuity

1. Tangent. The first degree of smoothness is for the slope not to have any abrupt change.
to be height continuous, that is, to borrow a word from plumbing, we don't want the curve to have any kink. More precisely, we don't want any input x_{0} for which there is a "jump in slope" from one side of x_{0} to the other side of x_{0}. In other words, we don't want any input x_{0} for which the slope on one side differs from the slope on the other side by some medium-size number.

6 Concavity

1. Concavity-sign Inasmuch as, in this text, we will be only interested in qualitative analysis we will not deal with the concavity-size but only with the concavity-sign:

Procedure 3.4 To get Concavity-sign near a given input for a function given by a global graph
i. Mark the local graph near the given input
ii. Then the concavity-sign is:
\cup when the local graph is bending up like \backslash or $ノ$,
\cap when the local graph is bending down like \ulcorner or \backslash.
iii. Code Slope-sign f according to ?? ?? - ?? (??)

LANGUAGE 3.7 The usual symbols are + Instead of \cup and - instead of \cap but, in this text, in order not to overuse + and - , we will use \cup and $\cap{ }^{3}$

Demo 3.4 Let KIP be the function whose Mercator graph is

[^60]
and let the given input be -1 . Then to get Concavity sign KIP near -1
i. We get the local graph near the given input:

ii. We then get that:

The concavity sign left of -1 , is \cup
The concavity sign right of -1 , is \cap
which we code as:
Concavity Sign KIP near $-1=\langle\cup, \cap\rangle$
2. 0-concavity input. Given a function f, the inputs whose Concavitysize is 0 will be particularly important in global analysis:

A medium input x_{0} is a 0 -concavity input if inputs that are near x_{0} have small concavity. We will use $x_{0 \text {-concavity }}$ to refer to 0 -concavity inputs.

EXAMPLE 3.33. Given the functionEXAMPLE 3.34. Given the function
whose Mercator graph is

whose Mercator graph is

Under Agreement 1.1 - (Page 65), with only a Mercator view of the global graph, there is of course no way we can get the whole local graph near ∞ and we will have to content ourselves with just the extremities of the local graph near ∞. However, since we cannot face ∞ and can only face the screen, we have to keep in mind Subsection 2.5 - Poles (Page 108)) so that

- The extremity of the local graph near $+\infty$ (left of $\infty)$ is to our right,
- The extremity of the local graph near $-\infty$ (right of ∞) is to our left.

EXAMPLE 3.35.

Jill is facing the screen so she can only see the extremities of the local graph near ∞ and she must keep in mind Subsection 2.5 - Poles (Page 108)) so that the local graph near $+\infty$ (to her right) is left of ∞ and the local graph near $-\infty$ (to her left) is right of ∞.

EXAMPLE 3.36.

When facing the screen, though, Jill can only see the extremities of the local graph near ∞ and she must keep in mind that the local graph near $+\infty$ (left of ∞) is to Jill's right and the local graph near $-\infty$ (right of ∞) is to Jill's left.

When facing the screen, though, Jill can only see the extremities of the local graph near ∞. As a result, the local graph near $+\infty$ (left of ∞) is to Jill's right and the local graph near $-\infty$ (right of ∞) is to Jill's left.
that is the largest error that will not change the qualitative information we are looking for. The largest permissible error, which is the equivalent of a tolerance, will turn out to be easy to determine.

We can see from Chapter 3 that the reason could not possibly give us a global graph is that, if a plot point may tell us where the global graph "is at", a plot point certainly cannot tell us anything about where the global graph "goes from there". And, since the latter is precisely what local graphs do with slope and concavity, we are now in a position to:
$===========================$
Something wrong with references here

1. Describe how to interpolate local graphs into a global graph. This corresponds to the second of the ?? ?? - ?? (??)
2. Discuss questions about interpolating local graphs which correspond to the other two ?? ?? - ?? (??)
i. How will we know near which inputs to get the local graphs?
ii. After we have interpolated the local graphs, how will we know if the curve we got is the global graph?

7 Concavity-continuity

1. Osculating circle. The second degree of smoothness is for the concavity not to have any abrupt change.
to be height continuous but this is much harder to represent because it is hard to judge by just looking how much a curve is bending.
$=======$ Begin WORK ZONE $=======$
$=======$ End WORK ZONE $=======$
2. Dealing with poles. The difficulty here stems only from whether or not it is "permisible" to use ∞ as a given input and/or as an output.

Even though, because ?? ?? - ?? (??) (?? ?? - ?? (??)), ?? ?? - ?? (??, we do use ∞ as a (Magellan) input and as a (Magellan) output because, as explained in ?? (??), we will only declare nearby inputs. (Which will shed much light on the local behavior of functions, in particular on the question of height continuity.)

However, the reader ought to be aware that many mathematicians in this country, for reasons never stated, flatly refuse to use nearby inputs with their students.

Another reason we do is because Magellan views are a very nice basis on which to discuss the local behavior of functions for inputs near ∞ and when outputs are near ∞. In particular, we can see that disheight continuiities caused by poles can be removed using ∞ as a Magellan output.

When ∞ as is not permissible as Magellan input and/or Magellan output, many functions are height discontinuous

EXAMPLE 3.37. The height discontinuity at -4 of the function in ?? whose Mercator graph is

can be removed by supplementing the global input-output rule with the input-output table:

If we imagine the Mercator graph compactified into a Magellan graph, we have

EXAMPLE 3.38. The height discontinuity at ∞ of the function $B I B$ in ?? whose Mercator graph is

can be removed by supplementing the global input-output rule with the input-output table:

Input	Output
∞	∞

If we imagine the Mercator graph compactified into a Magellan graph, we have

If we imagine the Mercator view compactified into a Magellan view, we have

is height discontinuous at ∞ not only because the global graph has a gap at ∞ since ?? ?? - ?? (??) but also because the global graph has a jump at ∞.

EXAMPLE 3.39. The function whose the global graph in Mercator view is

3. At ∞ The matter here revolves around whether or not ∞ should be allowed as a given input. We did but,

Also, in this section, for a reason which we will explain after we are done, we will have to deal separately with the case when the given input is x_{0} and the case when the given input is ∞.

In accordance with ??, we should say that all functions are height discontinuous at ∞ since the outputs for inputs near ∞ cannot be near the output for ∞ for the very good reason that we cannot use ∞ as input to begin with.

LANGUAGE 3.8 At ∞, things are a bit sticky:

- With a Magellan view, we can see if a function is height continuous at ∞ or not.
- Technically, though, to talk of height continuity at ∞ requires being able to take computational precautions not worth taking here but many teachers feel uneasy dealing with height continuity at ∞ without taking these precautions. So, we will not discuss height continuity at ∞ in this text.

EXAMPLE 3.40. The function whose global graph in Mercator view is

is height discontinuous at ∞ because, even though the outputs of inputs near ∞ are all large,the global graph has a gap at ∞ since ??.

EXAMPLE 3.41. The function

If we imagine the Mercator view compactified into a Magellan view, we have

is height discontinuous at -4 because the global graph has a pole at -4 :

- the outputs for nearby inputs, both inputs right of -4 and inputs left of -4 , are all large,
but, since ??,
- -4 itself has no output.

Magellan height continuous at
4. Magellan height-continuity at a pole x_{0}. We will say that a function is Magellan height continuous at x_{0} when we can remove the height discontinuity at x_{0} supplementing the offscreen graph with an input-output table involving ∞ as Magellan output.
EXAMPLE 3.42. The function in ?? is height discontinuous at -4 because the function has a gap at -4 but Magellan height continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

EXAMPLE 3.43. The function in ?? is height discontinuous at -4 because the function has a gap at -4 but Magellan height continuous as we could remove the gap by supplementing the global input-output rule with the input-output table

Input	Output
-4	∞

$==========$ OK SO FAR $==========$
$=======$ End HOLDING $======$
$=======$ Begin WORK ZONE $=======$

8 Feature Sign-Change Inputs

We will often need to find medium inputs such that the outputs for nearby inputs left of x_{0} and the outputs for nearby inputs right of x_{0} have given feature-signs.

1. height sign-change input An input is a height sign-change inputwhenever height sign $=\langle+,-\rangle$ or $\langle-,+\rangle$. We will use $x_{\text {height sign-change }}$ to
refer to a medium height sign-change input.

EXAMPLE 3.44.
Let f be the function given by the global graph

Then,

- $x_{0 \text {-height }}$ is not a height signchange input,
- $x_{\infty \text {-height }}$ is a height signchange input.
- ∞ is a height sign-change input.

EXAMPLE 3.45.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-height }}$ is a height signchange input,
- $x_{\infty \text {-height }}$ is not a height signchange input,
- ∞ is a height sign-change input.

2. Slope sign-change input An input is a Slope sign-change inputwhenever Slope sign $=\langle/, \backslash\rangle$ or $\langle\backslash, /\rangle$. We will use $x_{\text {Slope sign-change }}$ to refer to a Slope sign-change input.

EXAMPLE 3.46.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-slope }}$ is a Slope sign-change input,
- $x_{\infty-h e i g h t ~}$ is a Slope signchange input,
- ∞ is not a Slope sign-change input.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-slope }}$ is not a Slope signchange input,
- $x_{\infty \text {-slope }}$ is not a Slope signchange input,
- ∞ is not a Slope sign-change input.

3. Concavity sign-change input An input is a Concavity signchange inputwhenever Concavity sign $=\langle\cup, \cap\rangle$ or $\langle\cap, \cup\rangle$. We will use $x_{\text {Concavity sign-change }}$ to refer to a Concavity sign-change input.

EXAMPLE 3.48.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-concavity }}$ is a Concavity sign-change input,
- $x_{\infty-\text { height }}$ is a Concavity signchange input.
- ∞ is not a Concavity signchange input.

EXAMPLE 3.49.

Let f be the function given by the global graph

Then,

- $x_{0 \text {-concavity }}$ is a Concavity sign-change input,
- $x_{\infty-h e i g h t ~}$ is not a Concavity sign-change input,
- ∞ is a Concavity sign-change input.

One case where the picture gets a bit complicated is when the output point is ∞, that is when the input point is a pole

The two other cases where the picture gets a bit complicated are when the input point is ∞, whether the output point is a number y_{0} or ∞.

EXAMPLE 3.50. Local box for the input-output pair $(\infty,+71.6)$
i. We get the input level band for ∞
ii. We get the output level band for $+71,6$
iii. We box the intersection of the input level bands for ∞ and +71.6

What appears to be two boxes are actually parts of one box. This is because we are using the Mercator view. In a Magellan view they would appear as a single box.

EXAMPLE 3.51. Local box for the input-output pair (∞, ∞)
i. We get the input level band for ∞
ii. We get the output level band for ∞
iii. We box the intersection of the input level bands for ∞ and ∞

What appears to be four boxes are actually parts of one box. This is because we are using the Mercator view. In a Magellan view they would appear as a single box.

Actually, we will very often want to keep the two sides of. separate and the sided local graph box will then consist of two smaller rectangles, one on each side of the input level line. To get a sided local graph place then,

Procedure 3.5

i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band, v. Mark which side of the input neighborhood is linked to which side of the output neighborhood,
vi. The place for the given input - output pair is at the intersection of the corresponding sides of the level bands.

Demo 3.5 Get the sided place for $(+3,-5)$ given that:

- $+3^{-} \longrightarrow-5^{+}$
- $+3^{+} \longrightarrow-5^{-}$
i. We mark a neighborhood of +3 on the input ruler,
ii. We draw the input level band through the neighborhood of +3 , iii. We mark a neighborhood of -5 on the output ruler,
iv. We draw the output level band through the neighborhood of -5 , v. Mark:
- left of $+3 \rightarrow$ above -5

- right of $+3 \rightarrow$ below -5
vi. The sided graph box for $(+3,-5)$ is at the intersection of the corresponding sides of the level bands.

We are now going to sketch the way we will graph functions given by

Quite a long way away from "just plugging" numbers into the global input-output rule and joining smoothly the plot dots". But that will be graphing that makes sense.

I-O rules which we will illusttrate with an extended Example.

The big missing piece is that we will only be able to get the local frames and will not be able to really justify the local graphs until Chapter 3 .

The general idea will be to
4. Offscreen graph. Local graph(s) near the control input(s)
i. Local graph near ∞. We saw in Example 1.15 that $(L,-2 \oplus[\ldots])$
ii. Local graph(s) near the pole(s), if any.

We saw in Example 1.12 that -7 is a pole for the function $J I L L$.
We saw in Example 1.14 that $(-7 \oplus h, L+[\ldots])$

iii. Offscreen graph.

EXAMPLE 3.52. Consider the offscreen graph of the function $I A N$ in Example 1.11:

Joining smoothly this offscreen graph on-screen gives something like:

which is pretty much like $I A N$'s actual on-screen graph and even shows $I A N$'s 'essential' features, namely that:

- IAN has a 'minimum point', (But of course does not show what the inputoutput pair is.)
- IAN has a 'maximum point', (But of course does not show what the inputoutput pair is.)
but does not show that IAN has an 'inflection point'.
$=============O K$ SO FAR $==============$
EXAMPLE 3.53. Say the following is the global graph of a function given by some l-O rule:

We can see from the picture that the given function has:

- What we will call a 'pole': $(+27.3, \infty)$.
and
- What we will call a 'minimum point': $(+13.6,-21.3)$,
- What we will call an 'inflection point': $(+21.4,+48.7)$,
- What we will call a 'maximum point': $(+33.8,+20.1)$,

EXAMPLE 3.54. In EXAMPLE 1.13, the local graphs are:

Conversely, our approach to getting the global graph of a function given by an I-O rule will be to use the I-O rule to get the poles of the given function, if any, and then join smoothly the local graphs near the pole(s), if any, and near ∞.

Example 3.55. To get the global graph in Example 1.14 we first get the control local graphs:

which we then join smoothly:

Notice, though, that we while we did recover the 'existence' of a 'maximum point' right of +27.3 and the 'existence'of a 'minimum point' left of +27.3 , we did not recover the 'existence' of an 'inflection point'.

5. Sided local frame.

We obtain the procedure to get a sided local graph frame just by thickening ?? (??):

Procedure 3.6

i. Mark a neighborhood of the input on the input ruler,
ii. Draw the input level band,
iii. Mark a neighborhood of the output on the output ruler,
iv. Draw the output level band,
v. Mark which side of the input neighborhood is linked to which side of the output neighborhood,
vi. The local graph box for the given input-output pair is at the intersection of the corresponding sides of the level bands.

Demo 3.6 Get the sided local graph frame for $(-4, \infty)$ given that:

- $-4^{-} \longrightarrow-\infty$
- $-4^{+} \longrightarrow+\infty$
i. We mark a neighborhood of -4 on the input ruler,
ii. We draw the input level band through the neighborhood of -4 ,
iii. We mark a neighborhood of ∞ on the output ruler,
iv. We draw the output level band through the neighborhood of ∞, v. Mark:
- left of $-4 \rightarrow$ near $-\infty$
- right of $-4 \rightarrow$ near

vi. Fhe sided graph box for $(-4, \infty)$ is at the intersection of the corresponding sides of the level bands.

Demo 3.7 Get the sided local graph frame for $(\infty,+2)$ given that:

- $-\infty \longrightarrow+2^{+}$
- $+\infty \longrightarrow+2^{-}$
i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. We mark a neighborhood of +2 on the output ruler, iv. We draw the output level band through the neighborhood of +2 ,
v. Mark:
- $-\infty \rightarrow+2^{+}$
- $+\infty \rightarrow+2^{-}$

vi. The sided graph box for $(\infty,+2)$ is at the intersection of the corresponding sides of the level bands.

Demo 3.8 Get the sided local graph frame for (∞, ∞) given that:

- $-\infty \longrightarrow-\infty$
- $+\infty \longrightarrow-\infty$
i. We mark a neighborhood of ∞ on the input ruler,
ii. We draw the input level band through the neighborhood of ∞, iii. We mark a neighborhood of ∞ on the output ruler, iv. We draw the output level band through the neighborhood of ∞,
v. Mark:
- $-\infty \rightarrow-\infty$
- $+\infty \rightarrow-\infty$

vi. The sided graph box for (∞, ∞) is at the intersection of the corresponding sides of the level bands.

With a Magellan view of the global graph, we proceed pretty much as in ?? and once we imagine facing ∞, we can see which side is which.

EXAMPLE 3.56.

Jack is facing ∞ so the local graph near $+\infty$ which is to his left is left of ∞ and the local graph near $-\infty$ which is to his right is right of ∞.

9 Essential Feature-Sign Changes Inputs

1. Essential sign-change input A feature sign-change input is essential whenever its existenceis forcedby the offscreen graph. So, given the offscreen graph of a function, in order

Procedure 3.7 To establish the existence of essential feature sign change inputs in a inbetween curve
i. For each piece of the inbetween curve, check the feature sign at both end of the piece.

- If the feature signs at the two ends of the piece are opposite, there has to be a feature sign change input for that piece.
- If the feature signs at the two ends of the piece are the same, there does not have to be a feature sign change input for that piece.
ii. For each ∞ height input, if any, check the feature sign on either side of the ∞ height input:
- If the feature signs on the two sides of the ∞ height input are opposite, the ∞ height input is a feature sign change input.
- If the feature signs on the two sides of the ∞ height input are the same, the ∞ height input is not a feature sign change input..
iii. Check the feature sign on the two sides of ∞
- If the feature signs on the two sides of ∞ are opposite, ∞ is a feature sign change input.
- If the feature signs on the two sides of ∞ are the same, ∞ is not a feature sign change input..

Demo 3.9a

To establish the existence of Height-sign change inputs

- Since the Height signs near $-\infty$ and left of $x_{\infty \text {-height }}$ are opposite there is an essential Height sign-change between $-\infty$ and $x_{\infty \text {-height }}$.
- Since the Height signs right of $x_{\infty-\text {-height }}$ and near $+\infty$ are the same there is no essential Height sign-change between $x_{\infty \text {-height }}$ and $+\infty$.

Demo 3.9b

To establish the existence of Slope-sign change inputs

- Since the Slope signs near $-\infty$ and left of $x_{\infty-\text { height }}$ are opposite there is an essential Slope sign-change between $-\infty$ and $x_{\infty-\text { height }}$.
- Since the Slope signs right of $x_{\infty \text {-height }}$ and near $+\infty$ are the same there is no essential Slope sign-change between $x_{\infty \text {-height }}$ and $+\infty$.

To establish the existence of Concavity-sign change inputs

- Since the Concavity signs near $-\infty$ and left of $x_{\infty-\text { height }}$ are opposite there is an essential Concavity sign-change between $-\infty$ and $x_{\infty \text {-height }}$.
- Since the Concavity signs right of $x_{\infty \text {-height }}$ and near $-\infty$ are the same there is no essential Concavity sign-change between $x_{\infty-\text {-height }}$ and $+\infty$.

2. more complicated However, things can get a bit more complicated.

To establish the existence of Concavity-sign change inputs

- Since the concavity-sign at the transitions from $-\infty$ is \cup and the concavity-sign at the transition to $+\infty$ is also \cup, one might be tempted to say that there is no essential concavity sign-change input.
- However, attempting a smooth interpolation shows that things are a bit more complicated than would at first appear.
i. Since the slope-signs at the transition from $-\infty$ is / and the slope-sign at the transition to $+\infty$ is \backslash there has to be an essential Slope sign-change input near which Concavity sign $=$ $\langle\cap, \cap\rangle$

essential $_$local $_$extremeheight_input
ii. Since the concavity-signs near $-\infty$ and left of $x_{0 \text {-slope }}$ are opposite, there is an essential Concavity sign-change input between $-\infty$ and $x_{0 \text {-slope }}$.

iii. Since the concavity-signs right of $x_{0 \text {-slope }}$ and near $+\infty$ are opposite, there is an essential Concavity sign-change input between $x_{0 \text {-slope }}$ and $+\infty$.

3. non-essential That there is no essential feature sign-change input does not mean that there could not actually be a non-essential feature signchange input.

EXAMPLE 3.57.
Let f be the function whose offscreen graph is

- There is no essential Height sign-change input, no essential Slope sign-change input, and no essential Concavity sign-change input.
- However, the actual medium-size graph could very well be:

4. Essential Extreme-Height Inputs An extreme-height input is an essential local extreme-height input if the existence of the local extreme-height input is forced by the offscreen graph in the sense that any smooth interpolation must have a local extreme-height input.

EXAMPLE 3.58.

Let f be a function
whose offscreen graph is

Then,
i. Since the Slope signs near $-\infty$ and $+\infty$ are opposite there is an essential Slope sign-change between $-\infty$ and $+\infty$.
ii. Since the Height of $x_{\text {Slope sign-change }}$ is not infinite, the slope near $x_{\text {Slope sign-change }}$ must be 0

iii. $x_{0 \text {-slope }}$ is a local essential Maximum-Height input.

EXAMPLE 3.59.

Let f be a function whose offscreen graph is

Then,
i. Since the Slope signs near $-\infty$ and near $+\infty$ are opposite there is an essential Slope sign-change between $-\infty$ and $+\infty$.
ii. But since there is an ∞-height input, the Height near $x_{\text {slopesign-change }}$ is infinite and there is no essential local maximum height input.
5. Non-essential Features While, as we have just seen, the offscreen graph may force the existence of certain feature-sign changes in the onscreen graph, there are still many other smooth interpolations of the offscreen graph that are not forced by the onscreen graph.

EXAMPLE 3.60. The moon has an influence on what happens on earthfor instance the tides-yet the phases of the moon do not seem to have an influence on the growth of lettuce (see http://www.almanac.com/content/ farming-moon) or even on the mood of the math instructor.

We will say that a global feature is non-essentialif it is not forced by the offscreen graph.

1. As we saw above, feature sign-change inputs can be non-essential.
bump
wiggle

EXAMPLE 3.61.
Let f be a function whose graph is

Then,
i. The two Height sign-change inputs left of $x_{\infty \text {-height }}$ are non-essential because if the 0 -output level line were higher, there would be no Height sign-change input. For instance:

ii. The Height sign-change input right of $x_{\infty \text {-height }}$ is essential because, no matter where the 0 -output level line might be, the inbetween curve has to cross it.
2. There other non-essential features:

- A smooth function can have a bump in which the slope does not change sign but the concavity changes sign twice.

EXAMPLE 3.62. The function whose graph is

has a bump.

- A smooth function can also have a wiggle, that is a pair of bumps in opposite directions with the slope keeping the same sign throughout but with three inputs where the concavity changes sign.

EXAMPLE 3.63. The function whose graph is

has a wiggle.

- A smooth function can also have a max-min fluctuation or a minmax fluctuation that is a sort of "extreme wiggle" which consists of a pair of extremum-heights inputs in opposite directions. In other words, a fluctuation involves:
- two inputs where the slope changes sign
- two inputs where the concavity changes sign

EXAMPLE 3.64. The function whose graph is

has a max-min fluctuation.
However, as we will see in Chapter 4 - Input-Output Rules (Page 197), in Mathematics, functions are not usually given by a curve but are given "mathematically" and the investigation of how a function given "mathematically" behaves cannot be based on the function's global graph which, in any case, is usually not necessarily simple to get as we will discuss in Section 4 - Outputs Near A Given Number (Page 204).

But, while finding the global graph of a function given "mathematically" is not stricly necessary to understand how the given function behaves, the global graph of a function given "mathematically" can be a very great help to see the way the given function behaves.

So, in order to explain how we will get the global graph of a function given "mathematically" we will have to proceed by stages using functions given by a curve.

We begin by outlining the Procedure which we will follow in Chapter 4 - Input-Output Rules (Page 197).
i. The first step in getting the global graph of a function given "mathematically" will be to get the local graphs near the control points, that is near ∞ and near the poles, if any.
ii. The second step in getting the global graph of a function given "mathematically" will be to get the offscreen graph.
iii. The third step in getting the global graph of a function given "mathematically" will be to get the essential onscreen graph by joining smoothly
max-min $_$fluctuation min-max_fluctuation essential onscreen graph join smoothly
essential graph
join smoothly
essential on-screen graph
existence
proximate on-screen graph
the offscreen graph across the screen.
6. The essential onscreen graph. Thus, the first step in getting the global graph of a function given by an I-O rule will be to get the essential graph, that is the onscreen graph forced by the offscreen graph, in other words, the onscreen graph as we would see it from very far away.

Procedure 3.8 To get the essential graph of a function given by a global input-output rule
i. Get the offscreen graph, that is,
a. Get the local graph near ∞,
b. Get the local graph near the pole(s), if any,
ii. Join smoothly the offscreen graph across the screen

And just because something is far away doesn't mean it's of no interest: "Many ancient civilizations collected astronomical information in a systematic manner through observation." (https:// en.wikipedia.org/wiki/ History_ of_science.)

Get the offscreen graph from the local graphs near the control inputs namely near ∞ and near the pole(s) if any,

Then get the essential on-screen graph by
The essential on-screen graph will already provide information about the existence of essential behavior change inputs on-screen-but not about their location.

However, there might be behavioral changes too small to see from far away, so get the proximate on-screen graph by:
a. locating the non-essential behavioral change inputs, if any,
b. getting the local graphs near these non-essential behavioral change inputs

Actually makes sense doesn't $i t$?
c. Joining smoothly all local graphs, and then progressively zero in:

Demo 3.10 Suppose that we found that the function $J I M$ has a pole at +27.3 and that the local graphs near +27.3 and ∞ look like

I. We then have JIM's offscreen graph:

II. Then, the essential on-screen graph of $J I M$ would look something like either one of:

Under the assumption that the function is continuous, the essential on-screen graph of JIM already shows, the existence of an essential minimum and of an essential maximum:

However, there might be behavioral changes that we are too far to see.
III. Supposing, for instance, that we were to locate from the I-O rule a maximum at +7.8 coupled with a minimum at +2.1 , or a nonessential inflection at +7.5 then the proximate graph would be:

If we were to locate no non-essential behavioral change input, then of course the proximate graph would just be the essential on-screen graph

10 EmptyA

1. EmptyAa

2. EmptyAb

smooth

3. EmptyAc

11 EmptyB

1. EmptyBa

2. EmptyBb

3. EmptyBc Roughly, smoothness extends to slope and concavity the requirements that height continuity made on the height namely that there should be no abrupt differences in slope and concavity. This is quite another thing though:

- In the case of height continuity, we need to look at what happens at the given input and then to what happens near the given input but only to see if there is a jump and not even when there is a gap at x_{0}.
- In the case of slope and concavity, on the other hand, even with local graphs, neither slope nor concavity makes sense $A T$ the given input and what matters is only what happens $N E A R$ the given input.

CAUTION 3.3 Most unfortunately, the usual mathematical concept of smoothness implies height continuity which is not the way we think of smoothness in the real world.

For that matter, educologists
well know that, in order to define smoothness at x_{0} in the usual way one needs room in which to have a limit.

EXAMPLE 3.65. A PVC sewer pipe is usually perceived as being "smooth" regardless of whether or not it is solid or perforated and a smoothly bending copper pipe doesn't stop being so if and when it develops a pinhole.

So, in this text and in trying to represent smoothness, we will go by $f\left(x_{0}+h\right)$ and not pay any attention to $f\left(x_{0}\right)$.
https://en.wikipedia.org/wiki/Smoothness.
https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Singularity_(mathematics)
https://en.wikipedia.org/wiki/Nowhere_heightcontinuous_function
https://en.wikipedia.org/wiki/Weierstrass_function
https://en.wikipedia.org/wiki/Fractal_curve

12 Start

characterize
local feature
global featur

1. substart The purpose of this chapter is to introduce and discuss a number of 'features' that a function may or may not have when considering certain inputs.

An important matter will be to characterize inputs with regards to functions.

We will begin with local features, that is 'features' that a function may or may not have when considering inputs in a neighborhood of a given point, be the point a given number x_{0} or ∞.

We will then continue with global features, that is 'features' that a function may or may not have when considering $A L L$ inputs.

Part II

Calculatable Functions

While Functions Given By Data (Part I, Page 63) are often used in the experimental sciences, Functions Given By Data do not lend themselves to the calculations necessary for an understanding of how the function works.

So, both in engineering and in the sciences, functions are mostly given in ways that allow the output to be calculated and this Part II deals with the first and simplest way to do so.

Chapter 4

Input-Output Rules

Giving Functions Explicitly, 197 • Output AT A Given Number., 199 • A
Few Words of Caution Though., 203 • Outputs Near A Given Number, 204 • Local Input-Output Rule, 210 • Towards Global Graphs., 220 .

We now introduce the first of the two ways to give a calculatable function. describe, description
and leave the second way to ?? (?? ??, ??).

1 Giving Functions Explicitly

1. Global Input-Output Rules To give a function f explicitly is to give:
i. A global variable for the input numbers to be used- $R B C$ will normally employ x,
ii. A Global expression in terms of x for the output numbers to be computed in terms of the input numbers :

Definition 4.1 A global Input-Output rule (global I-O rule for short) provides a global expression in terms of x for computing $f(x)$ in terms of x :

$\underbrace{\text { underbracedstuff }}_{\text {underlabel }}$

EXAMPLE 4.1. To give the function called $\mathcal{J} \mathcal{I} \mathcal{L} \mathcal{L}$ explicitly, we give the global variable x and the global expression $\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$ so that $\mathcal{J} \mathcal{I} \mathcal{L} \mathcal{L}$ is given by:

2. Format Input-Output pairs. With functions given by a global Input-Output rule, $R B C$ will employ the following pointwise formats for Input - Output pairs.

DEFINITION ?? (Restated) ??
When the input is either a regular input or a pole, $R B C$ will employ:

- The data pair format for plotting:
$\left\langle x_{0}, y_{0}\right\rangle$ when x_{0} is a regular input
or
$\left\langle x_{0}, \infty\right\rangle$ when x_{0} is a pole
- The function format for computing:
$f\left(x_{0}\right)=y_{0}$ when x_{0} is a regular input
or

$$
f\left(x_{0}\right)=\infty \text { when } x_{0} \text { is a pole }
$$

- The arrow format for visualizing:

$$
\begin{aligned}
& x_{0} \xrightarrow{f} y_{0} \text { when } x_{0} \text { is a regular input } \\
& \text { or } \\
& x_{0} \xrightarrow{f} \infty \quad \text { when } x_{0} \text { is a pole }
\end{aligned}
$$

- The full arrow format for anything:
$x_{0} \xrightarrow{f} f\left(x_{0}\right)=y_{0}$ when x_{0} is a regular input or

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=\infty \quad \text { when } x_{0} \text { is a pole }
$$

2 Output AT A Given Number.

Even though, as we argued in Subsection 9.2 - Nearby numbers (Page 45), evaluating a global expression $A T$ a given number is to ignore the real world, we will occasionally need, if only for plotting purposes, to get the outputs for inputs $A T$ given numbers and the procedure $R B C$ will employ will essentiallybe just the same as Procedure 0.1-Get an individual expression from a global expression (Page 14):

Procedure 4.1 To get the output, if any, returned for an input $A T$ a given number x_{0} by a function f given by a global I-O rule

$$
x \xrightarrow{f} f(x)=\text { global expression in terms of } x,
$$

a. Declare that the input is $A T$ the given number x_{0} by writing the declaration

$$
\left.\right|_{x \leftarrow x_{0}} \quad \text { read as }\left.\quad\right|_{x \text { to be replaced by } x_{0}}
$$

to the right of the global I-O rule:

$$
x \xrightarrow{f} f(x)=\text { global expression in terms of }\left.x\right|_{x \leftarrow x_{0}}
$$

b. Execute the declaration by replacing in the global I-O rule every occurence of the global variable x by the given number x_{0} to get the individual expression for $f\left(x_{0}\right)$, that is for the output returned by $f A T x_{0}$:

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=\text { individual expression for } f\left(x_{0}\right)
$$

c. Try to compute the individual expression for $f\left(x_{0}\right)$, that is try to carry out the computations to find the value of $f\left(x_{0}\right)$, that is the number, if any, that the function returns as output when the input is $A T$ the given number x_{0}.
d. Characterize the input number with regards to the function.
e. Format the input-output pair according to ?? ?? - ?? (??)

Demo 4.1aTo get the output $A T-5$ returned by the function $\mathcal{J I} \mathcal{L} \mathcal{L}$ given by the global I-O rule $x \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$
a. We declare that the input is $A T-5$, that is we write the declaration

$$
\left.\right|_{x \leftarrow-5}
$$

to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}
$$

$$
x \leftarrow-5
$$

b. We execute the declaration, that is we replace every occurence of x in the global input-output rule by -5 to get the individual expression for $\mathcal{J I} \mathcal{L L}-5$) that is for the output of $\mathcal{J I} \mathcal{L} \mathcal{L}$ at -5 :

$$
-5 \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(-5)=\frac{(-4 \odot-5) \oplus+7}{+2 \odot(-5 \oplus+7)}
$$

c. We try to compute the individual expression for $\mathcal{J} \mathcal{I} \mathcal{L}(-5)$: :

$$
\begin{aligned}
& =\frac{(+20) \oplus+7}{+2 \odot(+2)} \\
& =\frac{+20 \oplus+7}{+2 \odot+2} \\
& =\frac{+27}{+4} \\
& =+6.75
\end{aligned}
$$

d. We characterize the input -5 with regards to the function $\mathcal{J} \mathcal{I} \mathcal{L}$: Since the function $\mathcal{J I} \mathcal{L} \mathcal{L}$ returns a number, +6.75 , for the input -5 , the input -5 is a regular input for the function $\mathcal{J I} \mathcal{L} \mathcal{L}$.
e. We format the input-output pair, that is:

- For plotting, we use the data pair format $(-5,+6.75)$
- For computing, we use the function format $\mathcal{J I L L}(-5)=+6.75$
- For visualizing, we use the arrow format $-5 \xrightarrow{\mathcal{J I L L}}+6.75$
- For anything, we can use the full arrow format $-5 \xrightarrow{\mathcal{J I L L}}$ $\mathcal{J I L L}(-5)=+6.75$

However, an individual expression need not always compute to a number and in particular, as we saw in ?? ?? - ?? (??), when having to divide a non-zero number by 0 , we can write the result as being ∞ and say that the input is a ?? (?? ??, ??).

Demo 4.1b To get the output returned for -7 by $\mathcal{J I L L}$ given by the global input-output rule $x \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$
a. We declare that the input is $A T-7$, that is we write the declaration

$$
\mid x \leftarrow-7
$$

to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}
$$

$$
\left.\right|_{x \leftarrow-7}
$$

b. We execute the declaration, that is we replace every occurence of x in the global input-output rule by -7 to get the individual expression for $\mathcal{J I L L}(-7)$ that is for the output of $\mathcal{J I} \mathcal{L} \mathcal{L} A T-7$:

$$
-7 \xrightarrow{\mathcal{J I L L L}} \mathcal{J I L L}(-7)=\frac{(-4 \odot-7) \oplus+7}{+2 \odot(-7 \oplus+7)}
$$

c. We try to compute the individual expression for $\mathcal{J} \mathcal{I L} \mathcal{L}(-7)$, that is we perform all the operations:

$$
\begin{aligned}
& =\frac{(+28) \oplus+7}{+2 \odot(0)} \\
& =\frac{+28 \oplus+7}{+2 \odot 0} \\
& =\frac{+35}{0} \\
& =\infty
\end{aligned}
$$

d. We characterize the input -7 with regards to the function $\mathcal{J I L} \mathcal{L}$: Since the function $\mathcal{J} \mathcal{L} \mathcal{L}$ returns ∞ for the input -7 instead of returning a number, the input -7 is a pole of the function $\mathcal{J I} \mathcal{L L}$.
e. We format the input-output pair, that is:

- For plotting, we use the data pair format $(-7, \infty)$
- For computing, we use the function format $\mathcal{J I L L}(-7)=\infty$
- For visualizing, we use the arrow format $-7 \xrightarrow{\mathcal{J I L L}} \infty$
- For anything, we can use the full arrow format $-7 \xrightarrow{\mathcal{J I L L}}$ $\mathcal{J I L L}(-5)=\infty$

3 A Few Words of Caution Though.

input versus input number
When a function is given by a global I-O rule instead of by a global graph, though, we will have to be very careful before we use ?? because

In Subsection 4.3 - Local frame (Page 130) we discussed how to get a local graph when the function is given by a smooth curve. When the function is given by an I-O rule, though, we start out with no global graph, though, and getting a local graph is much more complicated and will require the knowledge of the global graphs of 'power functions'.

Since $x_{0} \oplus h$ is a thickening of x_{0}, it is most tempting and natural to think of $f\left(x_{0} \oplus h\right)$ as a thickening of $f\left(x_{0}\right)$ but, even though it is "often" the case, unfortunately
mostly the case in Calculus According to the Real World texts that $f\left(x_{0} \oplus h\right)$ is a neighborhood of some output number, be it $f\left(x_{0}\right)$ or some other output number y_{0} so that one can thicken the output level line into an output level band

CAUTION 4.1 One should absolutely never use the words "nearby outputs" as a short for outputs for nearby inputs because the output numbers $f\left(x_{0} \oplus h\right)$ returned by the function f for $x_{0} \oplus h$, that is for the input numbers in a neighborhood of x_{0}, need not make up a neighborhood of any output number y_{0}, let alone make up a neighborhood of the output number $f\left(x_{0}\right)$

Example 4.2. In Example 1.11, even though the inputs 27.2 and 27.4 can be considered to be near, their outputs, respectively around +70 and -25 , certainly cannot be considered anywhere near.

Not even in the privacy of the reader's mind!
localize
local Input-Output rule
local I-O rule
local function
local Input-Output rule

4 Outputs Near A Given Number

Instead of getting ?? (?? ??, ??), we will get Output AT A Given Number (Section 2, Page 199). But then, when the function is given by a global Input-Output rule, the issue becomes how do we get the local graph for inputs in a neighborhood of the given number?

OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR

Here, we will deal with the first step in the process which is to get the output(s), if any, returned by the function for inputs in a neighborhood of the given point.

A function f being given by a global I-O rule, the idea will be to localize the function f NEAR the given point, that is to get the local InputOutput rule (local I-O rule for short) of a local function, that is of a (simpler) function that returns for inputs in a neighborhood of the given point the same output(s), if any, that the function f itself would return.

1. Output(s), if any, for inputs NEAR a given number. When the given point is a number x_{0}, the idea is to get the local I-O rule of a (simpler) local function $f_{x_{0}}$ such that $f_{x_{0}}(h)=f\left(x_{0} \oplus h\right)$, that is such that $f_{x_{0}}$ will return for h the same output(s), if any, that f would return for $x_{0} \oplus h$.

More precisely, ,
Definition 4.2 A function f being given by a global Input-Output rule,

$$
\underbrace{x-\frac{f}{x}}_{\text {Input }} \underbrace{\underbrace{f(x)}_{\text {Output }}=\text { Global expression in terms of } x}_{\text {Global input-output rule }}
$$

the local Input-Output rule of the local function $f_{x_{0}}$ is:

Then,

Procedure 4.2 To get the output(s), if any, returned for inputs near a given number x_{0} by a function f given by an global I-O rule $x \xrightarrow{f} f(x)=$ Global expression in terms of x,
i. Declare that the inputs are near x_{0} by using the local variable $x_{0} \oplus h$ and writing the declaration $\left.\right|_{x \leftarrow x_{0} \oplus h}$ to the right of each part of the global input-output rule:

$$
\left.\left.x\right|_{x \leftarrow x_{0} \oplus h} \xrightarrow{f} f(x)\right|_{x \leftarrow x_{0} \oplus h}=\text { Global expression in terms of }\left.x\right|_{x \leftarrow x_{0} \oplus h}
$$

ii. Execute the declaration, that is replace every occurence of the global variable x in the global input-output rule by the local variable $x_{0} \oplus h$, to get the individual expression for $f\left(x_{0} \oplus h\right)$:
$x_{0} \oplus h \xrightarrow{f} f\left(x_{0} \oplus h\right)=$ Individual expression in terms of $x_{0} \oplus h$
iii. Compute Individual expression in terms of $x_{0} \oplus h$ to get:

$$
\text { Local expression in terms of } h
$$

iv. The local Input-Output rule for f near x_{0} then is:

$$
h \xrightarrow{{ }^{f} x_{0}} \underbrace{f_{x_{0}}(h)=\text { Local expression in terms of } h}_{\text {Local input-output rule near } x_{0}}
$$

v. We then usually approximate Local expression in terms of h

CAUTION 4.2 Local expression in terms of h is different from Global expression in terms of x because, as the subscript x_{0} is intended to indicate, the number x_{0} has been "computed into" Local expression in terms of h.

Demo 4.2a To get the output(s), if any, returned for inputs NEAR -5 by the function $\mathcal{J} \mathcal{I L} \mathcal{L}$ given by the global input-output rule $x \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$
i. We declare that the inputs are near -5 by using the local variable $-5 \oplus h$ and writing the declaration $\left.\right|_{x \leftarrow-5 \oplus h}$ to the right ot each part of the global input-output rule:

$$
\left.\left.x\right|_{x \leftarrow-5 \oplus h} \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(x)\right|_{x \leftarrow-5 \oplus h}=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}
$$

ii. We execute the declaration, that is we replace every occurence of the global variable x in the global input-output rule by the local variable $-5 \oplus h$ to get the individual expression for $\mathcal{J I L L}(-5 \oplus h)$

$$
-5 \oplus h \xrightarrow{\mathcal{J I L L L}} \mathcal{J I L L L}(-5 \oplus h)=\underbrace{\frac{(-4 \odot-5 \oplus h) \oplus+7}{+2 \odot(-5 \oplus h \oplus+7)}}
$$

Individual expression NEAR ${ }_{-5}$
iii. We compute $\frac{(-4 \odot-5 \oplus h) \oplus+7}{+2 \odot(-5 \oplus h \oplus+7)}$ that is we perform all the operations to get the local expression NEAR -5 :

$$
=\frac{(-4 \odot-5) \oplus(-4 \odot h) \oplus+7}{(+2 \odot-5) \oplus(+2 \odot h) \oplus(+2 \odot+7)}
$$

$$
\begin{aligned}
& =\frac{+20 \oplus-4 h \oplus+7}{-10 \oplus+2 h \oplus+14} \\
& =\underbrace{\frac{+27 \oplus-4 h}{+4 \oplus+2 h}}_{\text {Local expression NEAR }}
\end{aligned}
$$

iv. The local Input-Output rule for $\mathcal{J} \mathcal{I} \mathcal{L}$ near -5 then is:

v. We approximate

$$
\frac{+27 \oplus-4 h}{+4 \oplus+2 h}
$$

$$
\begin{aligned}
& =\frac{+27 \oplus \text { small }}{+4 \oplus \text { small }} \\
& =+6.75 \oplus \text { small } .
\end{aligned}
$$

So, for inputs near $-5, \mathcal{J} \mathcal{I L} \mathcal{L}$ returns outputs near +6.75 .

DEMO 4.2b To get the output(s), if any, returned for inputs near -7 by the function $\mathcal{J I} \mathcal{L} \mathcal{L}$ given by the global input-output rule $x \xrightarrow{\mathcal{J I L L}}$ $\mathcal{J I L L}(x)=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$
i. We declare that the inputs are near -7 by using the local variable $-7 \oplus h$ and writing the declaration $\left.\right|_{x \leftarrow-7 \oplus h}$ to the right ot each part of the global input-output rule:
$\left.\left.x\right|_{x \leftarrow-7 \oplus h} \xrightarrow{\mathcal{J I L L}(} \operatorname{JII} \mathcal{L} \mathcal{L}(x)\right|_{x \leftarrow-7 \oplus h}=\frac{(-4 \odot x) \oplus+7}{+2 \odot(x \oplus+7)}$
ii. We execute the declaration, that is we replace every occurence of the global variable x in the global input-output rule by the local variable $-7 \oplus h$ to get the individual expression for $\mathcal{J I} \mathcal{L L}(-7 \oplus h)$:

$$
-7 \oplus h \xrightarrow{\mathcal{J I L L}} \mathcal{J I L L}(-7 \oplus h)=\underbrace{\frac{(-4 \odot-7 \oplus h) \oplus+7}{+2 \odot(-7 \oplus h \oplus+7)}}_{\text {Individual expression NEAR }-7}
$$

iii. We compute $\frac{(-4 \odot-7 \oplus h) \oplus+7}{+2 \odot(-7 \oplus h \oplus+7)}$ that is we perform all the
operations to get the local expression NEAR -7 :

$$
\begin{aligned}
& =\frac{(-4 \odot-7) \oplus(-4 \odot h) \oplus+7}{(+2 \odot-7) \oplus(+2 \odot h) \oplus(+2 \odot+7)} \\
& =\frac{+28 \oplus-4 h \oplus+7}{-14 \oplus+2 h \oplus+14} \\
& =\underbrace{\frac{+35 \oplus-4 h}{+2 h}}_{\text {Local expression NEAR }}
\end{aligned}
$$

iv. The local Input-Output rule for $\mathcal{J} \mathcal{I} \mathcal{L}$ near -7 then is:

v. We approximate

$$
\begin{aligned}
& =\frac{+35 \oplus \text { small }}{\text { small }} \\
& =\text { large }
\end{aligned}
$$

So, for inputs near $-7, \mathcal{J} \mathcal{L} \mathcal{L}$ returns outputs near ∞.
2. Output(s), if any, for inputs NEAR ∞. When the given point is ∞, the idea is to get a (simpler) local function f_{∞} that will return for L the same output(s), if any, that f would return for L

OKsoFAR OKsoFAR

Procedure 4.3 To get the output returned near a given point by a function f given by an global I-O rule $x \xrightarrow{f} f(x)=$ Global expression in terms of x,
i. Declare that the output is to be near the given x_{0} by writing to the right of the global input-output rule the declaration $\left.\right|_{x \leftarrow x_{0}}$:

$$
x \longrightarrow \xrightarrow{f} f(x)=\text { Global expression in terms of }\left.x\right|_{x \leftarrow x_{0}}
$$

ii. Execute the declaration by replacing every occurence of x in the global input-output rule by the given input x_{0} to get the individual expression for x_{0} :

$$
x_{0} \xrightarrow{f} f\left(x_{0}\right)=\text { Individual expression in terms of } x_{0}
$$

iii. Compute the individual expression in terms of x_{0}, that is perform the operations in the individual expression to get:

$$
\text { Individual expression in terms of } x_{0}=y_{0}
$$

iv. Format the input-output pair according to ?? ?? - ?? (??)

5 Local Input-Output Rule

In order to get the Start (Section 12, Page 193) NEAR a given point, we will need

Definition 4.3 A function f being given by a global Input-Output rule,

$$
\underbrace{x-\frac{f}{l}}_{\text {Input }} \underbrace{\underbrace{f(x)}_{\text {Output }}=\text { global expression in terms of } x}_{\text {Global input-output rule }}
$$

the local Input-Output rule

- Near ∞

- Near a given number x_{0}

OKsoFAR	OKsoFAR	OKsoFAR	OKsoFAR	OKsoFAR	OKsoFAR
OKsoFAR	OKsoFAR	OKsoFAR	OKsoFAR	OKsoFAR	OKsoFAR

We already discussed in Expressions And Values (Section 4, Page 12) why, in the real world, we cannot use isolated numbers and in Neighborhoods - Local Expressions (Section 9, Page 44) that we need neighborhoods.

In Start (Section 12, Page 193), we saw how to get global graphs from Local input-Output rule local graphs NEAR control points/

Here, we will see that to get the local graphs we need from Local inputOutput rules to get outputs near a given point.
from which we will get local graphs which we will interpolate to get global graphs.
make a diagram here.
alluded to the heart of the matter in Neighborhoods - Local Expressions (Section 9, Page 44)

As hinted at in Start (Section 12, Page 193), the way we will operate is by interpolation of local graph graphs.

The question then is how to get the local graph NEAR a given point for the global I-O rule, that is how to comput outputs NEAR given numbers.
with computing outputs AT given numbers is that:

OKsoFAR OKsoFAR

A major part of our work with functions given by input-output rules will be getting local graphs in order to:

- See Functions Given Graphically (Chapter 2, Page 93)
- Construct the global graph of the function to see The Looks Of Functions (Chapter 3, Page 141)
The first step towards getting local graphs for functions given by inputoutput rules will be to compute the output NEAR a given point.

The fact that global input-output rules involve a global expression in terms of a number will not prevent us from investigating a function NEAR a given point, be it $\infty, 0$, or x_{0} because,

- near $\infty, R B C$ will employ large-size numbers and therefore the large variable L
- near $0 \quad R B C$ will employ small-size numbers and therefore the small variable h
local input-output pair local input-output rule local arrow pair
- near $x_{0} R B C$ will employ nearby mid-size numbers and therefore the NEAR mid-size number variable $x_{0} \oplus h$

DEFINITION 4.4 Using the symbol V to stand for the appropriate one of the nearby variables for the given point: large variable L, small variable h, circa variable $x_{0} \oplus h$, we have:

- For graphing, use the local input-output pair
$(V$, executed expression in terms of $V)$
- For computing, use the local input-output rule

$$
f(V)=\text { executed expression in terms of } V
$$

Local input-output rule NEAR given point

- For seeing, use the local arrow pair
$V \xrightarrow{f}$ executed expression in terms of V
- For thinking, use

$$
V \xrightarrow{f} \underbrace{f(V)=\text { executed expression in terms of } V}_{\text {Local input-output rule NEAR given point }}
$$

1. Near ∞

Procedure 4.4 To get the outputs returned near ∞ by a function f given by an I-O rule $x \xrightarrow{f} f(x)=$ global expression in terms of x,
i. Declare that the input is a large-size indeterminate number by using the large variable L and writing the declaration $\left.\right|_{x \leftarrow L}$ to the right of the global input-output rule:

$$
x \xrightarrow{f} f(x)=\text { global expression in terms of }\left.x\right|_{x \leftarrow L}
$$

ii. Replace every occurence of x in the global input-output rule by
the large variable L to get the local input-output rule near ∞ :

$$
L \xrightarrow{f} f(L)=\text { global expression in terms of } L
$$

iii. Execute the global expression in terms of the relevant variable according to the rules in ?? ?? - ?? (??), that is do the operations in the global expression to get the executed expression
iv. Format according to Definition 4.4 - Local formats (Page 212)

Demo 4.3 To get the outputs returned for inputs near ∞ by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$

$$
\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}
$$

i. We declare that the input is a large-size indeterminate number by writing the declaration $\left.\right|_{x \leftarrow L}$ to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow L}
$$

ii. We replace every occurence of x in the global expression by L to get the individual expression for L :

$$
L \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(L)=\frac{L^{+2} \ominus+1}{L \oplus+3}
$$

iii. We execute the individual expression for L :

$$
\begin{aligned}
& =\frac{L^{+2} \ominus+1}{L \oplus+3} \\
& =\frac{L^{+2} \oplus[\ldots]}{L \oplus[\ldots]} \\
& =L \oplus[\ldots]
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format according to Definition 4.4-Local formats (Page 212)

- local Input-output pair $(L, L \oplus[\ldots])$
local executed expression
local input-output rule
local input-output pair
local input-output arrow pair
executed expression local input-output rule local input-output pair
- local input-output rule $\mathcal{Z E N A}(L)=L \oplus[\ldots]$
- local arrow pair $L \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(L)$
- local input-output rule $L \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(L)=L \oplus[\ldots]$

2. Near 0

Procedure 4.5 To get the outputs returned near 0 by a function f given by an I-O rule $x \xrightarrow{f} f(x)=$ global expression in terms of x,
i. Declare that the input is a small-size indeterminate number by using the small variable h and writing the declaration $\left.\right|_{x \leftarrow h}$ to the right of the global input-output rule:

$$
x \xrightarrow{f} f(x)=\text { global expression in terms of }\left.x\right|_{x \leftarrow h}
$$

ii. Replace every occurence of x in the global input-output rule by the small variable h to get the local input-output rule near 0 :

$$
h \xrightarrow{f} f(h)=\text { global expression in terms of } h
$$

iii. Execute the global expression in terms of the relevant variable according to the rules in ?? ?? - ?? (??), that is do the operations in the global expression to get the executed expression
iv. Format according to Definition 4.4 - Local formats (Page 212)

- For graphing, use the input-output pair
(h, executed expression in terms of h)
- For computing, use the equality

$$
\underbrace{f(h)=\text { executed expression in terms of } h}_{\text {Local input-output rule NEAR } 0}
$$

- For seeing, use the arrow pair
$h \xrightarrow{f}$ executed expression in terms of h
- For thinking, use the local input-output rule
$h \xrightarrow{f} \underbrace{f(h)=\text { executed expression in terms of } h}_{\text {Local input-output rule NEAR } 0}$

Demo 4.4 To get the outputs returned for inputs near 0 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$

$$
\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}
$$

i. We declare that the input is a small-size indeterminate number by using the small variable h and writing the declaration $\left.\right|_{x \leftarrow h}$ to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N \mathcal { A }}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow h}
$$

ii. We replace every occurence of x in the global expression by h to get the individual expression for h :

$$
h \xrightarrow[\mathcal{Z E N A}]{\mathcal{Z E N A}(h)}=\frac{h^{+2} \ominus+1}{h \oplus+3}
$$

iii. We execute the individual expression for h :

$$
\begin{aligned}
& =\frac{-1 \oplus h^{2}}{+3 \oplus+h} \\
& =-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2}
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format according to Definition 4.4 - Local formats (Page 212)

$$
\begin{aligned}
& \left(h,-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2}\right) \\
& \mathcal{Z E N A}(h)=-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2} \\
& h \xrightarrow{\mathcal{Z E N A}}=-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2} \\
& h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(h)=-\frac{1}{3} \oplus+\frac{1}{3^{+2}} h \oplus+\frac{8}{3^{+3}} h^{+2}
\end{aligned}
$$

3. Near x_{0}

Demo 4.5a To get the outputs returned for inputs near +5 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$ $\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}$
i. We declare that the input is an indeterminate number near +5 by writing the declaration $\left.\right|_{x \leftarrow+5 \oplus h}$ to the right of the global inputoutput rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow+5 \oplus h}
$$

ii. We replace every occurence of x in the global expression by $+5 \oplus h$ to get the individual expression for $+5 \oplus h$:
$+5 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+5 \oplus h)=\frac{+5 \oplus h^{+2} \ominus+1}{+5 \oplus h \oplus+3}$
iii. We execute the individual expression for $+5 \oplus h$:

$$
\begin{aligned}
& =\frac{+25 \oplus+10 h \oplus+h^{2} \ominus+1}{+5 \oplus+h \oplus+3} \\
& =\frac{+24 \oplus+10 h \oplus+h^{2}}{+8 \oplus+h} \\
& =+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format the input-output pair:
here? You will see in ?? ?? - ?? (??)

- $\left(+5 \oplus h,+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]\right)$
- $\mathcal{Z E N A}(+5 \oplus h)=+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]$
- $+5 \oplus h \xrightarrow{\mathcal{Z E N A}}+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]$
$\bullet+5 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+5 \oplus h)=+3 \oplus+\frac{7}{8} h \oplus+\frac{1}{64} h^{+2} \oplus[\ldots]$

Demo 4.5b To get the outputs returned for inputs near -3 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$

$$
\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus+3}
$$

i. We declare that the input is an undeterminate number near -3 by writing the declaration $\left.\right|_{x \leftarrow-3 \oplus h}$ to the right of the global inputoutput rule

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+1}{x \oplus+3}\right|_{x \leftarrow-3 \oplus h}
$$

ii. We execute the declaration by replacing every occurence of x in the input-ouput rule by $-3 \oplus h$ to get the global expression in terms of numbers near -3

$$
-3 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(-3 \oplus h)=\frac{-3 \oplus h^{+2} \ominus+1}{-3 \oplus h \oplus+3}
$$

iii. We compute the global expression in terms of $-3 \oplus h$, that is we perform the operations in the individual expression:

$$
\begin{aligned}
& =\frac{+9 \oplus-6 h \oplus h^{2} \ominus+1}{-3 \oplus+3 \oplus h} \\
& =\frac{+8 \oplus-6 h \oplus h^{2}}{h} \\
& =+8 h^{-1} \oplus-6 \oplus h \\
& =+8 h^{-1} \oplus[\ldots]
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format the input-output pair, that is we write:

- $\left(-3 \oplus h,+8 h^{-1} \oplus-6 \oplus h\right)$
- $\mathcal{Z E N A}(-3 \oplus h)=+8 h^{-1} \oplus-6 \oplus h$
- $-3 \oplus h \xrightarrow{\mathcal{Z E N A}}+8 h^{-1} \oplus-6 \oplus h$
- $-3 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(-3 \oplus h)=+8 h^{-1} \oplus-6 \oplus h$

Demo 4.5c To get the outputs returned for inputs near +1 by the function $\mathcal{Z E N A}$ given by the global input-output rule $x \xrightarrow{\mathcal{Z E N A}}$

$$
\mathcal{Z E N A}(x)=\frac{x^{+2} \ominus+1}{x \oplus-3}
$$

i. We declare that the outputs are to be for numbers near +3 by writing the declaration $\left.\right|_{x \leftarrow+1 \oplus h}$ to the right of the global input-output rule:

$$
x \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(x)=\left.\frac{x^{+2} \ominus+9}{x \oplus-3}\right|_{x \leftarrow+1 \oplus h}
$$

ii. We execute the declaration by replacing every occurence of x in the input-ouput rule by $+1 \oplus h$ to get the global expression in terms of numbers near +1

$$
+1 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+1 \oplus h)=\frac{+1 \oplus h^{+2} \ominus+1}{+1 \oplus h \oplus-3}
$$

iii. We compute the global expression in terms of $+1 \oplus h$, that is we perform the operations in the global expression:

$$
\begin{aligned}
& =\frac{+1 \oplus+2 h \oplus h^{2} \ominus+1}{+3 \oplus-3 \oplus h} \\
& =\frac{+2 h \oplus h^{2}}{h} \\
& =+2 \oplus h
\end{aligned}
$$

The last expression above is the executed expression.
iv. We format the input-output pair, that is we write:

- $(+1 \oplus h,+2 \oplus h)$
- $\mathcal{Z E N A}(+1 \oplus h)=+2 \oplus h$
- $+1 \oplus h \xrightarrow{\mathcal{Z E N A}}+2 \oplus h$
- $+1 \oplus h \xrightarrow{\mathcal{Z E N A}} \mathcal{Z E N A}(+1 \oplus h)=+2 \oplus h$

OKsoFAR

4. A Few Words of Caution Though. Starting with Part II Calculatable Functions (Page 197) though, functions will cease to be given by a global graph and will be given instead by an I-O rule

When a function will be given by an I-O rule instead of a global graph, though, we will have to be very careful before we use ?? because

In Subsection 4.3 - Local frame (Page 130) we discussed how to get a local graph when the function is given by a curve. When the function is given by an I-O rule, though, we start out with no global graph, though, and getting a local graph is much more complicated and will require the knowledge of the global graphs of 'power functions'.

Since $x_{0} \oplus h$ is a thickening of x_{0}, it is most tempting and natural to think of $f\left(x_{0} \oplus h\right)$ as a thickening of $f\left(x_{0}\right)$ but, even though it is "often" the case, unfortunately
mostly the case in Calculus According to the Real World texts that $f\left(x_{0} \oplus h\right)$ is a neighborhood of some output number, be it $f\left(x_{0}\right)$ or some other output number y_{0} so that one can thicken the output level-line into an output level-band

CAUTION 4.3 One should absolutely never use the words "neighboring outputs" as a short for outputs for neighboring inputs because the output numbers $f\left(x_{0} \oplus h\right)$ returned by the function f for $x_{0} \oplus h$, that is for the input numbers in a neighborhood of x_{0}, need not make up a neighborhood of any output number y_{0}, let alone make up a neighborhood of the output number

Not even in the privacy of the reader's mind!

EXAMPLE 4.3. In Example 1.11, even though the inputs 27.2 and 27.4 can be considered to be near, their outputs, respectively around +70 and -25 , certainly cannot be considered anywhere near each other.

6 Towards Global Graphs.

There is no general way to deal with functions given by I-O rules and how $R B C$ will deal with functions given by I-O rules will depend entirely on the kind of expression in terms of x that appears in the I-O rule. In particular, there is no general procedure for getting the global graph of functions given by I-O rules. So here we will only be able to say some general things.

1. Foward problems

2. Reverse problems. When a function f is given by an inputoutput rule

$$
x \xrightarrow{f} f(x)=\text { global expression in terms of } x
$$

the reverse problem for a given y_{0}

$$
f(x)=y_{0}
$$

means to solve the equation

$$
\text { global expression in terms of } x=y_{0}
$$

However, since the necessary Agebra depends entirely on the kind of global expression in terms of x that the input-output rule involves, and therefore on what type of function f is, we will only be able to deal with reverse problems as we go along and study each type of functions.
3. Global graph. Altogether, ∞ and poles will be the inputs that we will call the control points for that function.

Chapter 2 - Functions Given Graphically (Page 93) showed how we need local graphs to see local function behaviors, but with functions given by an input-output rule we will have to use Procedure 4.4 - Get output near ∞ from f given by an global I-O rule (Page 212) and then graph the local input-output rule.

$$
\underbrace{x-\frac{f}{f}}_{\text {Input }} \underbrace{\underbrace{f(x)}_{\text {Output }}=\text { global expression in terms of } x^{x(x)}}_{\text {Global input-output rule }}
$$

and so, a function being given by an I-O rule, we will proceed in the following three steps:
a. Locate the points NEAR which we will need a local graph, that is:

- The control points, that is
- There will also the poles, if any, that is the input numbers for which the output is ∞

As we saw, there will always be ∞ because it is one of the control points, ∞ and at the very least the poles if any, of the given function.
b. We will have to find the local frames in which the local graphs will be.
c. We will have to find the shape of the local graph.

The reason that there is no simple Procedure for getting local graphs is that:

Step a is a reverse problem which will require solving equations that will depend on the global expression in the global I-O rule that gives the function under investigation.

Step b of course has already been dealt with with ?? however CaUTION 2.1 will complicate matters.

Step c will depend on being able to approximate the given function.

4. Need for Power Functions. ,

So we will need local graphs for two purposes:
i. Get the global graph
ii. Get the local behaviors

So our approach will be:
i. Get the local graphs we will need to get the essential global graph
ii. Get the local graphs we need to get the needed behaviors
because no number of input-output pairs can almost never get us even an idea of the graph.

OKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFarOKsoFar

Part III

Appendices

Appendix A

Dealing With Decimal Numbers

Computing With Non-Zero Numbers, 225 • Picturing Numbers, 229 - Real World Numbers - Paper World Numerals, 231 - Things To Keep In Mind, 235 • Plain Whole Numbers, 236 • Comparing., 239 • Adding and Subtracting, 240 • Multiplying and Dividing, 241.

$=======$ Begin HOLDING

1 Computing With Non-Zero Numbers

What makes the calculus language appropriate for computations is the use of expressions

Unfortunalely, defining expressions formally is actually complicated and certainly beyond the scope of this text.

Fortunately, as we will now see, the expressions that we will be using will be quite simple so that we can safely leave the formal definitions to MATHEMATICAL LOGIC. (https://en.wikipedia.org/wiki/Expression_(mathematics))

There are also several issues we need to bring up that all have to do with the fact that computing with signed numbers automatically involves computations with plain numbers, thereby creating a risk of confusion.

1. Comparing (non-zero) numbers. The most important matter to keep in mind is that: (Will go to Dealing With Decimal Numbers (Appendix A, Page 225))
i. Comparing signed numbers (?? ?? - ?? (??)) is quite different from comparing plain numbers - even though we use the same symbols, $<,>$, and $=$, with both plain numbers and signed numbers:

- Positive numbers compare the same way as their sizes,
- Negative numbers compare the opposite way from their sizes, and
- Non-zero numbers with opposite signs compareindependently of their sizes: negative numbers are smaller than positive numbers regardless of their sizes.
and
ii. The everyday use of plain numbers with words instead of symbols to indicate the orientations can make using the words larger than, smaller than and equal to quite confusing.

EXAMPLE A.1. In everyday language, we say that A $\$ 700$ expense is larger than a $\$ 300$ expense because 700 is larger than 300 but the word expense cannot be seen as just meaning - because
-700 is smaller than -300 .
CaUtion A. 1 Larger than, smaller than, equal to have different meanings depending on whether we are comparing signed numbers or comparing plain numbers.
2. Adding and subtracting (non-zero) numbers. Notice that we have been using + and - not only as symbols for addition and subtraction of plain numbers, both whole and decimal, in spite of these being already quite different sets of numbers, but now also as symbols to distinguish positive numbers from negative numbers.

So, to avoid confusion as much as possible,
Definition A. $1 \oplus$ and \ominus, read "oplus" and "ominus", will be the symbols we will use for addition and subtraction of signed numbers.

While the main reason for the \bigcirc around the symbols + and - is to remind us to take care of the signs, another benefit is that using \oplus and \ominus lets us avoid having to use lots of parentheses.

EXAMPLE A.2. Instead of writing the standard expressions
$-23.87+(-3.03), \quad-44,29-(+22.78), \quad+12.04-(-41.38)$
we will write the expressions as:
$-23.87 \oplus-3.03, \quad-44,29 \ominus+22.78, \quad+12.04 \ominus-41.38$
which makes it clear without using parentheses which are symbols for calculations and which are symbols for signs.

THEOREM A. 1 Opposite numbers add to 0:
Two numbers are opposite iff the two numbers add-up to 0 .

3. Multiplying and dividing (non-zero) numbers.

i. While we could use the symbol \otimes for the multiplication of signed numbers, we will use the symbol \odot because the symbol . is the usual practice in CALCULUS texts.
ii. Similarly, while we could use the symbol \odot for the division of signed numbers, we will use the fraction bar _ because it is the usual practice in calculus texts.
?? ?? - ?? (??) uses the symbols \odot and -.

For good reasons as you will see. And no circle around that one either!

EXAMPLE A.3.

$+2 \odot+5=+10, \quad+2 \odot-5=-10, \quad-2 \odot+5=-10, \quad-2 \odot-5=+10$
$\frac{+12}{+3}=+4, \quad \frac{+12}{-3}=-4, \quad \frac{-12}{+3}=-4, \quad \frac{-12}{-3}=+4$,
THEOREM A. 2 Reciprocal non-zero numbers multiply to +1 Two numbers are reciprocal ifff the two numbers multiply to +1.0
4. Operating with more than two (non-zero) numbers With three numbers, let's call them Number One, Number Two, Number Three (which may or may not be the same) and two operations, let's call them operation one and operation two (which may or may not be the same):

Number One operation one Number Two operation two Number Three the overall result will usually depend on the order in which we perform the operations.

EXAMPLE A.4. The two computations for the expression $-3 \ominus+5 \ominus-7$:
a. $\underbrace{\underbrace{-3 \ominus+5}_{-8} \ominus-7}_{-1}$
b. $\underbrace{-3 \ominus \underbrace{+5 \ominus-7}_{+12}}_{-15}$
rule
EXAMPLE A.5. The two computations for the expression $-3 \odot+5 \oplus-7$
a. $\underbrace{\underbrace{-3 \odot+5}_{-15} \oplus-7}_{-22}$
b. $\underbrace{-3 \odot \underbrace{+5 \oplus-7}_{-2}}_{+6}$
i. So, to indicate which operation(s) is/are intended to be performed ahead etc as that keeps the number of parentheses down. of the other (s), one uses parentheses, ().
However, when one attempts to minimize the number of parentheses, stating "rules" to indicate the order in which operations are to be performed is actually a surprisingly complicated issue. (See https://en.wikibooks.org/ wiki/Basic_Algebra/Introduction_to_Basic_Algebra_Ideas/Order_of_ Operations and/or https://en.wikipedia.org/wiki/Order_of_operations)
Because we will want to focusii. So, in order to keep matters as simple as possible, this text will always on the Calculus rather than use however many parentheses will be necessary and we will just agree that on the Algebra.

In other words, no PEMDAS, no BEDMAS, no BODMAS, no BIDMAS. (https:// en. wikipedia. org/wiki/Order_ of_ operations) Just WYSIWYG.

Agreement A. 1 Computable expressions are expressions that, after parentheses surrounding a single number (if any) have been removed,

Rule A. Do not include only one parenthesis (left or right),
Rule B. May include two surrounding parentheses.

Example A.6. In example 0.16, using Agreement B.1-'Number' (without qualifier) (Page 249),
a. With $(-3 \ominus+5) \ominus-7$,

- We cannot perform \ominus as the expression +5$) \ominus-7$ breaks Rule A.
- We can perform \ominus as the expression $(-3 \ominus+5)$ complies with Rule B.

The computation would thus be writen:

$$
(-3 \ominus+5) \ominus-7 \underbrace{=(-8) \ominus-7}_{\text {Step can be skipped }}=-8 \ominus-7=-1
$$

b. With $-3 \ominus(+5 \ominus-7)$,

- We cannot perform \ominus as the expression $-3 \ominus(+5$ breaks Rule A.
- We can perform \ominus as the expression $(+5 \ominus-7)$ complies with Rule \mathbf{A} and Rule B. The computation would thus be written:

$$
-3 \ominus(+5 \ominus-7) \underbrace{=-3 \ominus(+12)}_{\text {Step can be skipped }}=-3 \ominus+12=-15
$$

Example A.7. In Example 0.17 (Page 11) 0.17, using Agreement B. 1 - 'Number' (without qualifier) (Page 249),
a. With $(-3 \odot+5) \oplus-7$:

- We cannot perform \oplus as the expression +5) $\oplus-7$ breaks Rule A.
- We can performe \odot as the expression $(-3 \odot+5)$ complies with Rule B.
picture
ruler
equidistant
tickmark
scale
origin

The computation would thus be writen:

$$
(-3 \odot+5) \oplus-7=(-15) \oplus-7=-15 \oplus-7=-22
$$

Step can be skipped
b. With $-3 \odot(+5 \oplus-7)$:

- We cannot perform \odot as the expression $-3 \odot(+5$ breaks Rule A.
- We can perform \oplus as the expression $(+5 \oplus-7)$ complies with Rule B. The computation would thus be written:

$$
-3 \odot(+5 \oplus-7) \underbrace{=-3 \odot(-2)}_{\text {Step can be skipped }}=-3 \odot-2=+6
$$

2 Picturing Numbers

To picture numbers, RBC will employ rulers which, in the calculus language, are essentially just what goes by the name of "ruler" in ordinary English, that is an oriented straight line with equidistant tickmarks together with a denominator.
i. Scale. The scale of a ruler is, because tickmarks are equidistant, the ratio of any distance on the ruler to the corresponding distance in the real world (https://en.wikipedia.org/wiki/Scale_(represent)

EXAMPLE A.8. The following :

is a quantitative ruler whose scale is $\frac{\frac{1}{2} \text { inch }}{1000 \text { inch }}=\frac{1 \text { inch }}{2000 \text { inches }}=\frac{1 \text { inch }}{2000 \text { inehes }}=\frac{1}{2000}$
ii. Origin. Rulers must have a tickmark labeled 0 as an origin,

0 for Origin as well as for zero.
sign
side
positive number negative number symmetrical

Example A.9.

To know where the origin is is necessary because:

- The sign in a signed number says which side of the origin the signed number is - as seen when facing 0 - and we will agree that

Agreement A. 2 When facing 0,

- Positive numbers (+ sign) will be to the right of the origin,
- Negative numbers (- sign) will be to the left of the origin 0.

EXAMPLE A.10. On a ruler,
Since Sign -5 is - , the number -5 is tickmarked left of 0 .
Since Sign +3 is + , the number +3 is tickmarked right of 0 .

- The size of a number says how far from 0 the number is on a ruler. Since opposite numbers have the same size, opposite numbers are symmetrical relative to the origin.

EXAMPLE A.11. The numbers -5.0 and +5.0 have the same size, namely 5.0 , so they are equally far from 0 :

3 Real World Numbers - Paper World Numerals

Separating what is happening in the real world from what is happening in the paper world of a text is not easy so this section will use the terminology used in Model Theory and Linguistics. And since it is impossible to exhibit in the paper world the real world entities we will want to calculate about, we will use paper world drawings as stand-ins for real world entities:

There are two kinds of real world entities which we will both denote with paper world numeral phrases consisting of:

- A numerator using numerals (https://en.wikipedia.org/wiki/Nume (linguistics)) to provide the magnitude of the entity. (Quantitative information.)
paper world
entity
numeral phrase
With heavy reminders of to
nymerratorld each word be-
qumgeral
magnitude
quantitative information
denominator
essence
qualtative information
collection
itent
whole number
count
and
- A denominator using words to provide the essence of the entity. (Qualtative information.)
However, the two kinds of real world entities are different enough that we will have to use two different kinds of paper world numerals in the numerators.

1. Magnitude of collections of items.

i. Real world. Since we get a real world collection of identical real world items just by gathering the real world items, determining how many real world items there are in a collection is simple: we get the whole number of real world items in the collection just by counting the real world items in the collection. .

Example A.12. The real world items

are not all the same and so cannot be gathered into a real world collection but the real world items

are all the same and so can be gathered into a real world collection:

plain whole numeral unit
decimal number
and we get the whole number by counting the items:

ii. Paper world. Collections of items are then denoted by paper world numeral phrases in which:

- The paper world numerator is the paper world plain whole numeral which says how many items there are in the collection, that is which denotes the real world whole number of items in the real world collection,
- The paper world denominator is the paper world word which says what kind of items are in the collection, that is which denotes the kind of real world items in the real world collection.

EXAMPLE A.13.

where:
. The numeral 3 says how many items in the collection, and where
. The word Apple says what kind items in the collection.

2. Magnitude of amounts of stuff.

i. Real world. Since stuff comes in bulk, determining how much stuff there is in an amount of stuff is much more complicated than deciding how many items there are in a collection of items because, in order to determine how much stuff there is in a real world amount of stuff, we first need a real world unit of that stuff. Only then can we determine the decimal number of units in the amount of stuff.

EXAMPLE A.14. Milk is stuff we drink and before we can say how much milk we have or want, we must have a real world unit of milk, say liter of milk or pint of milk.
ii. Paper world. Amounts of stuff are then denoted by paper world
numeral phrases in which:

- The paper world numerator is the paper world plain decimal numeral which says how much stuff there is in the amount of stuff, that is, more precisely, the plain decimal numeral in which the decimal pointer indicates which digit corresponds to the unit of stuff in the denominator, which denotes the real world decimal number of units of stuff in the amount of stuff.
- The paper world denominator is the paper world word which says what kind of stuff in the amount of stuff and what unit of stuff.

EXAMPLE A.14. (Continued) Then we may say we have or want, say, 6.4 liters of milk or, say, 3 pints of milk.

It should be noted that decimal numerals work hand in hand with the Metric System of units while US Customary units usually require fractions, $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$, etc and mixed fractions.
3. Orientation of entities. Numerators can provide more information than just the magnitude of the entity, that is about the whole number of items or the decimal number of units of stuff, and can also provide information about the orientation of the entity by using signed whole numerals and signed decimal numerals instead of plain whole numerals and plain decimal numeral

4. Concluding remarks.

i. Since decimal numeral denote amounts of stuff while whole numerals denote collections of items, we absolutely need to distinguish decimal numerals from whole numerals.

EXAMPLE A.15. We need to distinguish the decimal numeral 27. which we would denote an amount of stuff from the whole numeral 27 which would denote a collection of items.

So, it would be tempting to agree that "The decimal point will never go without saying in this text." but, unfortunately, this is not really sustainable.
So, like everybody, we will have to agree that
Agreement A. 3 will often go without saying and we will often leave it to the reader to decide which kind of numeral is intended.
plain decimal numeral
decimal pointer
digit
orientation
signed whole numeral signed decimal numeral

Which points to its left.

Although panels on interstate roads have begun to show such things as 3.7 Miles.

Told him it wouldn't! Didn't believe me! Wasted a lot of time trying anyway.
qualifier

Of course, sales people would write $\$ 11.99$!

In fact, mathematicians, scientists, and engineers also use many other kinds of 'numbers' for many other kinds of entities. (https://en. wikipedia. org/wiki/Number)

But you can always click on Appendix C - Localization (Page 251)

EXAMPLE A.16. When using money, pennies may or may not be beside the point:

- We are more likely to write $\$ 12.00$ than $\$ 12$
but
- We are more likely to write $\$ 7000000$ than $\$ 7000000.00$.
ii. Altogether then, since the kind of numeral used in the numerator depends on:
A. Whether the real world entity we want to denote is:
- A collection of items
or
and also An amount of stuff
B. Whether the information we want about the real world entity is:
- The magnitude of the entity alone,
or
- The magnitude and the orientation of the entity, the word numeral should always be used with one of the following qualifiers

	Collections	Amounts
Magnitude only	plain whole	plain decimal
Magnitude and orientation	signed whole	signed decimal

EXAMPLE A.17.

- 783043 is a plain whole numeral which may denote a collection of people,
- 648.07 is a plain decimal numeral which may denote an amount of money,
- -547048308 and +956481 are signed whole numerals,
- -137.0488 and +0.048178 are signed decimal numerals.

And, since, as mentioned almost from the outset of ?? - Preface You Don't Have To Read (Page xi), this text assumes that the reader knows how to "compare, add/subtract, multiply/divide" signed decimal 'numbers', we will take the qualifiers plain/signed and whole/decimal to have been defined.
iii. However,

Caution A. 2 While Discrete Mathematics deals with collections of items, CALCULUS deals only with amounts of stuff and we will use whole numerals only occasionally and then mostly as
an explanatory backdrop for decimal numbers.

4 Things To Keep In Mind

1. Positive numbers vs. plain numbers. Except for subtraction, And in only half the cases at computing with positive numbers goes exactly the same way as computing that. with the plain numbers that are their sizes..

EXample A.18.

Positivenumbers Plainnumbers

So it is tempting to skip the + sign in front of positive numbers as "going without saying". But then sentences lose their symmetry.

Example A.19. The sentences

- "The opposite of +5 is -5 " and "The opposite of -3 is +3 "
are both nicely symmetric while the sentences
- "The opposite of 5 is -5 " and "The opposite of -3 is 3 " both lack symmetry.

But then experience shows that skipping the + sign in front of positive numbers can lead to ignoring the difference between positive numbers and plain numbers and that leads to misunderstanding and mistakes because - while working with plain numbers we can just focus on the numbers we are working with,

In fact, negative numbers were called absurd numbers for a long time until "Calculus made negative numbers necessary. "(https:
//en. wikipedia. org/
absur wegative_ number\#
 itetmy what you see, no more, croulaks.
plain
whole
natural
 no sign does NOT mean positive but plain and therefore NO opposite.

APPENDIX A. DEALING WITH DECIMAL NUMBERS

- when working with positive numbers we have to keep constantly in mind that the numbers we are working with have a sign, namely + , and therefore have opposites, namely negative numbers.
And so, in order to help distinguishing signed numbers from plain numbers and more individually positive numbers from their sizes, in this text:

Agreement A. 4 will never go without saying.

EXAMPLE A.20. We will always distinguish, for instance,

- The positive number +51.73 from the plain number 51.73 which is the size of +51.73 . (As well as the size of -51.73)
- The positive number +64300 from the plain number 64300 which is the size of +64300 . (As well as the size of -64300)

2. Symbols vs. words. Another issue is that, in everyday language, instead of using signed numbers we still tend to use plain numbers with everyday words instead of symbols to denote the orientation.

EXAMPLE A.21. We often use words like credit and debit, left and right, up and down, income and expense, gain and loss, incoming and outgoing, etc instead of the symbols + and - to denote the orientation and using plain numbers to denote the size.

5 Plain Whole Numbers

Because we can deal with collection of items one by one, describing how many items there are in a collection is easy: just count the items in the collection. Then, how many items there are in the collection will be given by a plain (as opposed to 'signed') whole (as opposed to 'decimal') number.

EXAMPLE A.22. Apples are items. (We can eat apples one by one.) To say how many $\boldsymbol{\omega}$ are in the collection $\omega \boldsymbol{\omega} \boldsymbol{\omega}$ we count them that is we point successively at each while singsonging "one, two, three".

Language A. 1 Plain whole numbers are also called counting numbers or natural numbers (https://en.wikipedia.org/wiki/ Natural_number) -and, incorrectly, 'positive integers'.
decimal (as opposed to whole
An amount of stuff we can deal with only in bulk
orientation
magnitude that is how many items in the collection or how much stuff in the amount

LANGUAGE A.2The word orientation is not too good but the words "direction" and "way" aren't either.

A lot of times, describing how many items we have or want in a collection or how much stuff we have or want in an amount of stuff is not enough and we also need to describe the orientation of the collection of items or of the amount of stuff: up/down, left/right, in/out, etc.

EXAMPLE A.23. How many people are going into or coming out of a building usually depends on the time of the day.
At least for the rest of us, how much money is coming into or going out of our bank account usually depends on the day of the month.

1. Size and sign. So, both signed (as opposed to plain) whole numbers and signed (as opposed to plain) decimal numbers carry two kinds of information:

- The size of a signed number (whole or decimal) is the quantitative information which is given by the plain whole number that describes how many items there are in the collection or the plain decimal number that describes how much stuff there is in the amount.

Language A. 3 Size is called absolute value in most textbooks but some use numerical value or modulus or norm.

The standard symbol for size is | | but we will not use it and just write size of.
how many
how much
decimal
amount
stuff
orientation
magnitude
signed
size
quantitative
absolute value numerical value modulus
norm
\|
sign
qualitative
$+$
positive
negative
integers
the same
the opposite
opp

EXAMPLE A.24. Instead of $|-3|=3$ we will write: size $-3=3$.

- The sign of a signed-number (whole or decimal) is the qualitative information which is given by + or - , the symbols that describe the orientation of the collection or of the amount, up/down, left/right, in/out, after a decision has been made as to which orientation is to be symbolized by + and therefore which by - . Then,

Positive (whole or decimal) numbers are the signed numbers whose sign is + ,
Negative (whole or decimal) numbers are the signed numbers whose sign is - .

EXAMPLE A.25. +17.43 Dollars specifies a real world transaction:

- The size of $+17.43,17.43$, describes the magnitude of the transaction,
- The sign of $+17.43,+$, describes the orientation of the transaction.

LANGUAGE A. 4 Signed whole numbers are usually called integers.

Two signed numbers are:

- the same whenever they have the same size and the same signs. (So, when one is positive, the other has to be positive and vice versa.)
- the opposite whenever they have the same size but different signs. (So, when one is positive, the other has to be negative and vice versa.)
We will use opp as shorthand for opposite of.

Example A.26.

opp $(+32.048)=(-32.048) \quad$ opp $(-32.048)=(+32.048)$

$$
=======\text { End LOOK UP }=======
$$

As implied by the title, operating on plain numbers, whole and decimal, is assumed to be known and this Appendix deals only with the complications brought about by the signs.

- ?? ?? - ?? (??) • ?? ?? - ?? (??) •?? ?? - ?? (??)

6 Comparing.

$<$
>
$=$
The symbols, $<,>,=\leqq$, \geqq, are used for both (plain) comparisons and (signed) comparisons

Definition A. 2 Given the signed numbers x_{1} and x_{2},

- When x_{1} and x_{2} are both positive,

$$
\begin{aligned}
& x_{1}>x_{2} \text { iff Size } x_{1}>\text { Size } x_{2} \\
& x_{1}<x_{2} \text { iff Size } x_{1}<\text { Size } x_{2} \\
& x_{1}=x_{2} \text { iff Size } x_{1}=\text { Size } x_{2}
\end{aligned}
$$

- When x_{1} and x_{2} are both negative,

$$
\begin{aligned}
& x_{1}>x_{2} \text { iff Size } x_{1}<\text { Size } x_{2} \\
& x_{1}<x_{2} \text { iff Size } x_{1}>\text { Size } x_{2} \\
& x_{1}=x_{2} \text { iff Size } x_{1}=\text { Size } x_{2}
\end{aligned}
$$

- When x_{1} and x_{2} have opposite signs,
$x_{1}<x_{2}$ iff x_{1} is negative (and therefore x_{2} is positive)
$x_{1}>x_{2}$ iff x_{1} is positive (and therefore x_{2} is negative)
larger-than
smaller-than
equal-to
not-equal-to
larger-than-or-equal-to
smaller-than-or-equal-to
larger-than
smaller-than
equal-to
not-equal-to
larger-than-or-equal-to
smaller-than-or-equal-to
The easiest way is to picture the two numbers on a quantitative ruler and then, because of ?? ?? - ?? (??), the number to our left will be smaller than the number to our right and the number to our right will be larger than the number to our left.

EXAMPLE A.27. Given the numbers -7.2 and -0.9 . we have
add

The standard symbols for sign-size-comparisons of all four kinds of numbers are:

Sign-size-comparisons	Symbols
equal to	$=$
not equal to	\neq
smaller than	$<$
smaller than or equal to	\leqq
larger than	$>$
larger than or equal to	\geqq

EXAMPLE A.28. In symbols, Example A. 27 becomes

7 Adding and Subtracting

. To add
In this text, for reasons explained in ?? ?? - ?? (??), when dealing with signed numbers, we will use the word oplus instead of the word add which we will reserve for plain numbers.
we will use the symbol \oplus
addition
To subtract a number we oplus its opposite instead.
subtraction
subtract
multiply
divide
reciprocal (plain)

8 Multiplying and Dividing

. To multiply

Memory A. 1 Multiplication and Division of Signs

	+	-
+	+	-
-	-	+

To divide

1. Reciprocal of a number.

i. The reciprocal of a plain number is 1 . divided by that number. (https: //www.mathsisfun.com/reciprocal.html). So:
i. Reciprocal $1 .=1$.
ii. The reciprocal of 1 followed or preceded by 0 s is easy to get: read the number you want the reciprocal of and insert/remove "th" accordingly,

EXAMPLE A. 29.

$$
\begin{aligned}
\text { Reciprocal } 1000 & =1 \text { thousand th }=0.001 \\
\text { Reciprocal } 0.000001 & =1 \text { million th }=1000000 .
\end{aligned}
$$

iii. The reciprocal of other numbers needs to be calculated and, for most, we may as well use a calculator.

Example A. 30.

$$
\begin{aligned}
& \text { Reciprocal } 4.00=\frac{1.00}{4.00}=+0.25 \text { (Hopefully by hand.) } \\
& \text { Reciprocal } 0.89=\frac{1.00}{0.89}=1.13 \text { (Use a calculator.) } \\
& \text { Reciprocal } 2.374=\frac{1.00}{2.374}=0.421 \text { (Use a calculator.) }
\end{aligned}
$$

An important property of reciprocals is that:

MEMORY A. 2 Sizes of plain reciprocal numbers

The larger a plain number is, the smaller its reciprocal will be, The smaller a plain number is, the larger its reciprocal will be.

Proof.

EXAMPLE A. 31.

ii. The reciprocal of a signed number is +1 . divided by that number. So, getting the reciprocal of a signed number involves Memory A. 1 - Multiplication and Division of Signs (Page 241) which complicates matters:

Example A. 32.

$$
\begin{aligned}
\text { Reciprocal }+1000 . & =+1 \text { thousand th }=+0.001 \\
\text { Reciprocal }-0.000001 & =-1 \text { milliontK }=-1000000 . \\
\text { Reciprocal }+4.00 & =\frac{+1.00}{+4.00}=+0.25 \text { (Hopefully by hand.) } \\
\text { Reciprocal }-0.89 & =\frac{+1.00}{-0.89}=-1.13 \text { (Use a calculator.) } \\
\text { Reciprocal }-2.374 & =\frac{+1.00}{-2.374}=-0.421 \text { (Use a calculator.) }
\end{aligned}
$$

To be specific: ?? ?? - ?? (??).

In particular, even just stating the extension of Memory A. 2 - Sizes of plain reciprocal numbers (Page 242) to signed numbers is a bit complicated and is much easier done in Subsection 12.1 - substart (Page 193).

Appendix B

Real Numbers

What are the real numbers?, 243 - Calculating with real numbers., 245 - Approximating Real Numbers, 246 - The Real Real Numbers Are The Regular Numbers, 248.

The sole purpose of this Appendix is to explain why this text is using signed decimal numbers instead of the so-called real numbers to be found in most Calculus texts, and what using in this text real numbers instead of signed decimal numbers would have entailed.

1 What are the real numbers?

1. Title. Even though most college mathematics textbooks claim to use real numbers, the closest they ever come to defining real numbers is something along the lines of "a real number is a value of a continuous quantity that can represent a distance along a line." (https://en.wikipedia.

Which, one has to admit, isn't particularly enlightening. Moreover, the wording org/wiki/Real_number or https://math. vanderbilt.edu/schectex/coursps/Xikipedia keeps changing thereals/)

And of course, there is a very good reason for this vagueness (https: //en.wikipedia.org/wiki/Vagueness_and_Degrees_of_Truth): in contrast with signed decimal numbers, real numbers are so extremely complicated to define that it is only done in Real Analysis.

[^61]fractional number
fraction
root number
root

Which, unless you are a mathematician, is not exactly enlightening either. In any case, a very, very tall order.
wikipedia.org/wiki/Rational_number), and finally defining realnumbers as equivalence classes of their Cauchy sequences or (*) as Dedekind cuts, which are certain subsets of rational numbers." (https://en.wikipedia. org/wiki/Real_number\#Definition)
(*) This is in fact incorrect: one does not have a choice between the Dedekind route and the Cauchy route and one should both:
i. Go the Dedekind route and extend the metric and then prove that the quotient is metric-complete, and then
ii. Go the Cauchy route and extend the order and then prove that the quotient is order-complete, and finally
iii. Prove that the two quotients are both metric-isomorphic and orderisomorphic.

2. Fractions and roots. Originally, fractional numbers, fraction

 for short, were the numbers with which to denote amounts of stuff.EXAMPLE B.1. $+\frac{3}{4}$ Gallon of milk
But, to begin with, defining fractional numbers is not that simple and then a fraction is only like a Birth Certificate in that a fraction is just a name that says where the fraction is coming from and a fraction certainly does not provide any indication of what the size of the fraction might be.

EXAMPLE B.2. The fraction $\frac{4168}{703}$ is just a name for the solution of the equation $703 x=4168$ (Assuming the equation has a solution!) And, up front, it is certainly not clear how $\frac{4168}{703}$ compares with, say, $\frac{4167}{702}$ or even with $\frac{4}{7}$

And then it was realized that not every amount of stuff could be described by a fractional number of a given unit of stuff.

EXAMPLE B.3. Take the side of a square as unit of length. Then the diagonal of the square is not a fractional number of the side. (https://en.wikipedia. org/wiki/Irrational_number.)

So, root numbers, root for short, were invented but again a root is just a name that says where the root is coming from but a root certainly
does not provide by itself any indication of what the size of the root might be.

EXAMPLE B.4. The root $\sqrt[3]{+17.3}$ is just a name for the solution of the equation $x^{3}=+17.3$. (Assuming the equation has a solution!)
And up front, it is certainly not clear how $\sqrt[3]{+17.3}$ compares with, say, $\sqrt[2]{+18.5}$
And, worse, fractions and roots are best cases and most real numbers do not tell us where they are coming from and even less how to get even a rough idea of what the size of that real number might be.

You just have to find out from somewherre. other way around,

EXAMPLE B.5.

- π is just a name that does not say by itself that π is "the ratio of a circle's circumference to its diameter". (https://en.wikipedia.org/wiki/Pi)
- e is just a name that does not say by itself that e is "a mathematical constant which appears in many different settings throughout mathematics". (https://en.wikipedia.org/wiki/E_(mathematical_constant))

While Calculus goes all the way back to the late 1600s (?? (?? ??, ??)), DIScrete Mathematics goes only back, at the very earliest, to the early 1900s.

OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR OKsoFAR

2 Calculating with real numbers.

1. Title. This can be done directly from the names only with the same two kinds of real numbers, that is when the real numbers are fractions or roots:
i. When the real numbers are fractions, there are procedure to compare, add, subtract, multiply and divide directly from the whole numbers that make up the fractions. (https://en.wikipedia.org/wiki/Rational_ number\#Arithmetic)
decimal approximation

And at the expense of forcing memorization of scattered recipes.

EXAMPLE B.6. To know which is the larger of $\frac{4168}{703}$ and $\frac{5167}{831}$ there is a procedure that involves only the wholenumbers 4168, 703, 5167 and 831 namely $\frac{4168}{703}<\frac{5167}{831}$ if and only if $4168 \times 831<703 \times 5157$.
ii. When the real numbers are roots, there are procedures to multiply and divide directly with the whole numbers that make up the roots but not to add or subtract. (https://en.wikipedia.org/wiki/Nth_root\# Identities_and_properties)

EXAMPLE B.7. $\quad \sqrt[2]{5} \times \sqrt[3]{7}=\sqrt[2 \times 3]{5^{3} \times 7^{2}}$
iii. However, it is usually not possible to calculate with both kinds of real numbers at the same time.

EXAMPLE B.8. Add e and π and/or figure out which of the two is larger. (Hint: you can't do either from the names.)

And, even when the real numbers are fractions and roots, things can still be difficult.

EXAMPLE B.9. Add $\sqrt[3]{64}$ and $\frac{876}{12}$ and/or figure out which of the two is larger. (Hint: in this case you can do both but not in the only slightly different case of $\sqrt[3]{65}$ and $\frac{875}{12}$.)
iv. Of course, the examples in textbools use mostly fractions and/or roots even though it is at the expense of being immensely misleading if only because most real numbers are neither fractions nor roots.

3 Approximating Real Numbers

The reason engineers and physicists, chemists, biologists, don't worry about real numbers is because about the first thing they do is to replace real numbers by decimal approximations, that is . . . signed decimal numbers!!!

1. Approximating. To begin with, one way or the other, all real numbers, including fractions and roots, come with a Procedure for calculating approximations by numbers.
i. To approximate fractions, we use the division procedure.

EXAMPLE B.10. To approximate $\frac{4168}{703}$, we divide 703 into 4168 .
Few divisions end by themselves. Fortunately, though, when they don't, the more we push the division, the better the approximation.
ii. To approximate roots, we essentially proceed by trial and error.

EXAMPLE B.11. To approximate $\sqrt[3]{17.3}$, we go:

- $1.0^{3}=1.0$
- $2.0^{3}=8.0$
- $3.0^{3}=27.0$,

Since 17.3 is between 8.0 and $27.0, \sqrt[3]{17.3}$ must be somewhere between 2.0 and 3.0. (But how do we know that it must?) So now we go:

- $2.1^{3}=9.261$
- $2.5^{3}=15.620$
- $2.6^{3}=17.576$

Since 17.3 is between 15.620 and $17.576, \sqrt[3]{17.3}$ must be between 2.5 and 2.6. (But how do we know that it must?)
And so on. (The actual procedure is more efficient but that's the idea.)
Of course, the more "exotic" the real number is, the more complicated the procedure for approximating is going to be:

EXAMPLE B.12. There are many ways to approximate π. The simplest one is the Gregory-Leibniz series whose first few terms are:
$\frac{4}{1}-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}+\frac{4}{13} \ldots$
However, even with " 500,000 terms, it produces only five correct decimal digits of π " (https://en.wikipedia.org/wiki/Pi\#Approximate_value) But there are shorter if more complicated ways to approximate π.

EXAMPLE B.13. One of the very many ways to approximate e is:
$1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \cdots$
(https://en.wikipedia.org/wiki/E_(mathematical_constant) \#Asymptotics)
2. Approximation error. Since a real number is usually not equal to the signed decimal number used to approximate it, in order to write
[...]
largest permissible error
equalities we will have to use:
DEFINITION B.1vill be the symbol for "some infinitesimal number, positive or negative, whose size is too small to matter here".

In other words, [...] is a signed number about which the only thing we know is that the size of [...] is less than the largest permissible error whichi is the equivalent here of a tolerance.

Example B.14.

- $\frac{4168}{703}=5.929+[\ldots]$ where $[\ldots]$ is less than 0.001 which is the largest permissible error. (Else the procedure would have generated 5.928 or 5.930 instead of 5.929.)
- $\sqrt[3]{17.3}=2.586318666944673+[\ldots]$ where $[\ldots]$ is less than 0.000000000000001 which is the largest permissible error. (Else the procedure would have generated 2.586318666944672 or 2.586318666944674 instead of 2.586318666944673 .)
- $\pi=3.1415+[\ldots]$ where $[\ldots]$ is less than 0.00001 which is the largest permissible error. (Else the procedure would have generated 3.1414 or 3.1416 instead of 3.1415 .)
- $e=2.71828182+$ [...] where [...] is less than 0.00000001 which is the largest permissible error. (Else the procedure would have generated 2.71828181 or 2.71828183 instead of 2.71828182 .)

4 The Real Real Numbers Are The Regular Numbers

Xxxxxxxxxxxx

1. Title. So, "the wheel is come full circle" (King Lear), from the real numbers all the way back to the real world numbers, with just one question left:

Why should people who want to learn CALCULUS have to use real numbers which they would eventually have to approximate with ... real world numbers anyway?

But since,

4. THE REAL REAL NUMBERS ARE THE REGULAR NUMBERS249

- To complete the quote from Gowers in Subsection 1.3 - Whole numbers vs. decimal numbers (Page 5), "Physical measurements are not real numbers. That is, a measurement of a physical quantity will ..."
and
- Just like people, "most calculators do not operate on real numbers.

Instead, they work with finite-precision [decimal] approximations."(https: //en.wikipedia.org/wiki/Real_number\#In_computation.)
the answer must surely be, as Engineers used to be fond of saying, that:
"The real real numbers are the signed decimal numbers."

$=======$ Begin HOLDING $=======$

So, in view of the fact that we will use No other number (Caution 0.2, Page 5) than signed decimal numbers and since always having to write the qualifiers "signed decimal" to qualify the word "number" would be unbearably burdensome:

Agreement B. 1 In the absence of qualifier, in this text the word number will always be short for signed decimal number.

Example B.15. What we will intend by:

- "Numbers are beautiful" is "Signed decimal numbers are beautiful",
- "Plain numbers are cute" is "Plain numbers, whether whole or decimal, are cute".
- "Decimal numbers are handsome" is "Decimal numbers, whether plain or signed, are handsome".

```
========End HOLDING ========
========Begin HOLDING========
```

2. Real world numbers. So, like all scientists and engineers, the numbers we will use will be

DEFINITION B. 2 Real world numbers are (signed decimal) numbers all whose digits are significant.

[^62]And real world numbers are
not at all the same as 'Real 250
Numbers' which will be dis-
fussed of in ? number? (??)

And so, from now on,
AGREEMENT B. 1 (Restated) 'Number' (without qualifier) will be short for real world number.

Appendix C

Localization

Inputs are counted from the origin that comes with the ruler. However, rather than counting inputs relative to the origin of the ruler, it is often desirable to use some other origin to count inputs from.

Appendix D

Equations - Inequations

The following is essentially lifted from Reasonable Basic Algebra, by A. Schremmer, freely downloadable as PDF from (Links live as of 2020-12-31):

- Lulu.com (https://www.lulu.com/en/us/shop/alain-schremmer/reasonable-basic-algebra/ ebook/product-1m48r4p5.html?page=1\&pageSize=4)
and/or
- ResearchGate.net (https://www.researchgate.net/publication/346084126_ Reasonable_Basic_Algebra_Lulu_2009)

Appendix E

Addition Formulas

Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares), 255.

1 Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares)
In order to get

Appendix F

Polynomial Divisions

Division in Descending Exponents, 257.

1 Division in Descending Exponents

Since decimal numbers are combinations of powers of TEN, it should not be surprising that the procedure for dividing decimal numbers should also work for polynomials which are combinations of powers of x.

Appendix G

Systems of Two First Degree Equations in Two Unknowns

General case, 259.

1 General case
XXXX XXXXX XXXXX

260APPENDIX G. SYSTEMS OF TWO FIRST DEGREE EQUATIONS IN TWO UNKNOWNS

Appendix H

List of Agreements

Agreement 0.1 xviii
AGREEMENT 0.2 Use of ordinary English words xx
Agreement 0.3 xxi
Agreement 0.4 xxvi
Agreement 0.1 1
AGREEMENT 0.2 4
AGreement 0.3 15
AGREEMENT 0.4 35
AGREEMENT B. 1 (Restated) 'Number' (without qualifier) 37
Agreement 0.5 44
AGREEMENT $0.6 \quad 0$ and ∞ are reciprocal. 60
AGREEMENT 1.1 65
Agreement 1.2 Colors for left-items and Right items 65
AGREEMENT 1.3 66
Agreement 1.4 79
AGREEMENT 2.1 Inputs with no output 97
AGREEMENT 2.2 122
AGREEMENT 2.3 126
Agreement A. 1 Computable expressions 228
Agreement A. 2 Sides of the origin 230
Agreement A. 3 The decimal point 233
Agreement A. 4 The + sign 236
Agreement B. 1 'Number' (without qualifier) 249
AGREEMENT B. 1 (Restated) 'Number' (without qualifier) 250

Appendix I

List of Cautionary Notes

CAUTION 0.1 xxii
CAUTION 0.2 xxvi
CAUTION 0.3 xxviii
CAUTION 0.4 Theory: Scientific vs. Mathematical xxix
CAUTION 0.5 Lagrange's approach to CAlculus xxx
CAUTION 0.1 5
CAUTION 0.2 No other number 5
CAUTION 0.3 10
CAUTION 0.3 (Restated) 11
CAUTION 0.4 13
CAUTION 0.5 Two meanings of 'zero' 21
CAUTION 0.6 Natural vs Whole 21
CAUTION 0.70 is dangerous 22
CAUTION 0.8 No symbol for size-compare 31
CAUTION 0.9 31
CAUTION 0.100 is not a infinitesimal number 38
CAUTION 0.110 is not a infinitesimal number 38
CAUTION 0.12 No calculating with points 45
CAUTION $0.13{ }^{+}$or ${ }^{-}$up to the right and by itself 56
CAUTION 1.1 64
CAUTION 1.2 66
CAUTION 1.3 Numerical relations need not be endorelations 77
CAUTION 1.4 Sparseness of Numerical data-sets 78
CAUTION 1.5 Rulers vs. axes 85
CAUTION 1.6 Data-plots are sparse 87
CAUTION 2.1 Parentheses 98
CAUTION 2.2 On-screen graphs not conclusive 119
CAUTION 2.3 Smooth curves not necessarily simple 119
CAUTION 2.4 128
CAUTION 3.1 Local extreme-height inputs 156
CAUTION 3.2 Local extreme-height inputs 159
CAUTION 3.3 Smothness near vs. smoothmess at 192
CAUTION 4.1 Neighgorhood of output 203
CAUTION 4.2 206
CAUTION 4.3 Neighgorhood of output 219
CAUTION A. 1 Larger than, smaller than, equal to 226
CAUTION A. 2 234

Appendix J

List of Definitions

DEFINITION 0.1 Meaninglessness xxi
DEFINITION 0.1 Generic given numbers 9
DEFINITION $0.2 \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ 12
DEFINITION $0.3 \boldsymbol{x}_{\text {pos }}, \boldsymbol{x}_{\text {neg }}$, etc 12
DEFINITION 0.4 Size-comparison. 30
DEFINITION 0.5 finite number 36
DEFINITION 0.6 infinitesimal numbers 37
DEFINITION $0.7 \boldsymbol{h}, \boldsymbol{k}$, 37
DEFINITION 0.8 infinite numbers 38
DEFINITION $0.9 \boldsymbol{L}, \boldsymbol{M}$, 38
Definition 0.10 Points 45
DEFINITION 0.11 Neighborhoods. 46
DEFINITION $0.12 \quad \boldsymbol{x}_{\mathbf{0}} \oplus \boldsymbol{h}$ 47
DEFINITION 2.1 Functional Requirement 94
Definition 2.1 Functional Requirement (Restated) 96
DEFINITION 2.2 I-O notations 98
DEFINITION 2.1 Functional Requirement (Restated) 102
DEFINITION 2.3 Local behaviour coding format 138
DEFINITION 4.1 global I-O rule. 197
DEFINITION ?? ?? (Restated) 199
DEFINITION 4.2 Local I-O rule 204
DEFINITION 4.3 Local I-O rule 210
DEFINITION 4.4 Local formats 212
DEfinition A. $1 \oplus$ and \ominus 226
Definition A. 2 Comparison (Signed) 239
DEFINITION B. 1 [...] 248

DEfinition B. 2 Real world numbers 249

Appendix K

List of Language Notes

LANGUAGE 0.1 xvii
LANGUAGE 0.2 Evolution of the calculus language xxi
LANGUAGE 0.3 iff xxiii
LANGUAGE 0.4 xxiii
LANGUAGE 0.1 Item vs element 3
LANGUAGE 0.2 Figure 7
LANGUAGE 0.3 9
LANGUAGE 0.4 10
LANGUAGE 0.5 12
LANGUAGE 0.6 19
LANGUAGE 0.7 20
LANGUAGE 1.1 n-tuple 64
LANGUAGE 1.2 Data-sets 66
LANGUAGE 1.3 pairing-dot 82
LANGUAGE 1.4 84
LANGUAGE 2.1 96
LANGUAGE 2.2 Reverse Polish Notation 98
LANGUAGE 2.3 Alternate arrow notation. 99
LANGUAGE 3.1 Removable height discontinuity at $\boldsymbol{x}_{\mathbf{0}}$ 154
LANGUAGE $3.2 \boldsymbol{x}_{\max }$ 155
LANGUAGE $3.3 \boldsymbol{x}_{\text {min }}$ 156
LANGUAGE $3.4 \boldsymbol{x}_{\text {max }}$ 157
LANGUAGE $3.5 \boldsymbol{x}_{\text {min }}$ 158
LANGUAGE 3.6 Slope-sign 160
LANGUAGE 3.7 Concavity-sign 162
LANGUAGE 3.8 Continuity at ∞ 169
Language A. 1 237
LANGUAGE A. 2 orientation 237
Language A. 3 237
LANGUAGE A. 4 238

Appendix L

List of Theorems

THEOREM 0.1 Sizes of reciprocal numbers: 32
ThEOREM 0.2 Finite numbers are non-zero numbers. 37
THEOREM 0.3 Oplussing qualitative sizes numbers 40
THEOREM 0.4 Otiming qualitative sizes 41
Theorem 0.5 Odividing qualitative sizes 41
THEOREM 0.6 Reciprocity of qualitative sizes 44
THEOREM 0.6 (Restated) Reciprocity of qualitative sizes 59
Theorem 2.1 124
Theorem A. 1 Opposite numbers add to 0 : 227
Theorem A. 2 Reciprocal non-zero numbers multiply to +1 227

Appendix M

List of Procedures

Procedure 0.1 Get an individual expression from a global
expression . 14
Procedure 0.2 Evaluate a global expression $A T x_{0}$..... 15
Procedure 0.3 Evaluate a global expression near a point . . . 47
Procedure 1.1 Basic picture of a given relation 79
Procedure 1.2 Plot a pair of numbers 82
Procedure 1.3 Read a pairing-dot 83
Procedure 1.4 Right number(s) for a left-number 87
Procedure 1.5 right-number for a left-number (data-set . . 90
Procedure 2.1 Get $f\left(x_{0}\right)$ for x_{0} off a I-O set. 103
Procedure 2.2 Get input for given y_{0} from a I-O set. . . . 105
Procedure 2.3 Input level-band for a point 127
Procedure 2.4 Output level-band for a given point. 129
Procedure 2.5 Local frame for an input point 130
Procedure 2.6 Local graph near a point from a global graph 133
Procedure 3.1 Localheight-sign near a point from a global graph . 142
Procedure 3.2 Height-size near a point from a global graph, 143
Procedure 3.3 Slope-sign near a point from a global graph . 159
Procedure 3.4 Concavity-sign near a point from a global graph 162

Procedure 3.5 To get the sided local graph box for an inputoutput pair knowing which side of the input neighborhood is paired with which side of the output neighborhood. 173
Procedure 3.6 To get the sided local graph frame for an inputoutput pair knowing which side of the input neighborhood is paired with which side of the output neighborhood. 179
Procedure 3.7 Existence of essential feature sign changes in inbetween curves181
Procedure 3.8 Get essential graph of f given by I-O rule 188

Procedure 4.1 Get the output $A T x_{0}$ from the global I-O rule giving f. 199
Procedure 4.2 Get the outputs near x_{0} from the global I-O rule giving f. 205
Procedure 4.3 Get the output near x_{0} from the global I-O rule giving f. 209
Procedure 4.4 Get output near ∞ from f given by an global I-O rule.
Procedure 4.5 Get output near 0 from f given by an global I-O rule. 214

Appendix N

List of Demos

DEMO 0.1 From x to +5 14
DEMO 0.2a From x to +5 16
Demo 0.2b From x to -3 16
DEMO 0.2c From x to +3 17
DEMO 0.3a To evaluate 48
Demo 0.3b To evaluate 49
DEMO 0.3c To evaluate 49
DEMO 0.3d To evaluate 50
Demo 1.1 Basic picture 79
Demo 1.2 lot given $(\mathrm{L}-\mathrm{R})$ 82
Demo 1.3 Read the pair of numbers 83
Demo 1.4a Get right-number related to 87
Demo 1.4b Get right-number related to +2 88
DEMO 1.4c Get right-number related to +1 89
DEMO 1.5a Get left-number(s) related to +30 90
Demo 1.5b Get right-number related to -50 91
Demo 1.5c Get left-number(s) related to -30 92
Demo 2.1a Get $f(-2.5)$ 103
Demo 2.1b Get $f(-2.5)$ 104
Demo 2.2a Input(s) for -80, if any, from IO-plot 105
Demo 2.2b Input(s) for -80, if any, from IO-plot 106
DEMO 2.2c Input(s) for -80 , if any, from I-O set 107
DEMO 2.3a Input level-band for -31.6 127
DEMO 2.3b Input level-band for ∞ 128
DEMO 2.4a Output level-band for -7.83 129
DEMO 2.4b Output level-band for ∞ 130
DEMO 2.5a Local frame for the regular input -3.16 131
DEMO 2.5b Local frame for the pole -3.16 131
DEMO 2.5c Local frame for low infinity $(\infty,+71.6)$ 132
DEMO 2.5d Local frame for high infinity (∞, ∞) 132
DEMO 2.6a Local graph near -3 from a given global graph 134
DEMO 2.6b Local graph near ∞ from a given global graph 134
DEMO 2.6c Local graph near ∞ from a given global graph 135
DEMO 2.6d Local graph near ∞ from a given global graph 136
DEMO 2.6e Local graph near ∞ from a given global graph 136
DEMO 3.1 Local height-sign near +5 143
DEMO 3.2a 144
Demo 3.2b 144
DEMO 3.2c ListEntry 145
DEMO 3.3a 160
DEMO 3.3b 160
DEMO 3.4 162
DEMO 3.5 174
Demo 3.6 179
DEMO 3.7 179
DEMO 3.8 180
DEMO 3.9a Let f be the function whose offscreen graph is 182
DEMO 3.9b Let f be the function whose offscreen graph is 182
DEMO 3.9c Let f be the function whose offscreen graph is 182
DEMO 3.9d Let f be the function whose offscreen graph is 183
DEMO 3.10 xxxxxx 188
DEMO 4.1a Output from an I-O rule $A T-5$, 200
DEMO 4.1b 201
DEMO 4.2a Output from an I-O rule $A T-5$, 206
DEMO 4.2b 207
DEMO 4.3 Get from $\frac{x^{+2} \ominus+1}{x \oplus 0}$ output near ∞213
Demo 4.4 Get from $\frac{x^{+2} \ominus+1}{x \oplus 0}$ output near -3 215
DEMO 4.5a Get output near +5 from $\frac{x^{+2} \ominus+1}{x \oplus+3} \ldots . .216$
Demo 4.5b Output from an I-O rule near -3, 217
Demo 4.5c To evaluate . 218

Index

+, 238
$+\infty, 56$
-, 238
$-\infty, 56$
0, 21
0., 22
$0^{+}, 56$
$0^{-}, 56$
<, 239
=, 239
>, 239
L, 38
M, 38
—, 227
$\geqq, 239$
$\leqq, 239$
| |, 237
$\odot, 227$
〈, 65
〉, 65
$\ominus, 226$
$\oplus, 226$
$\xrightarrow{f}, 98$
f, 98
$f(x), 98$
h, 37
$x, 12$
x-axis, 85
$x_{0 \text {-height }}, 146$
$x_{0}, 9$
$x_{1}, 9$
$x_{2}, 9$
$x_{\infty \text {-height }}, 146$
$x_{\text {neg }}, 12$
$x_{\text {pos }}, 12$
$x_{\text {maxi-height }}, 155,157$
$x_{\text {min-height }}, 156,158$
$y, 12$
y-axis, 85
$y_{0}, 9$
$y_{1}, 9$
$y_{2}, 9$
$y_{\text {neg }}, 12$
$y_{\text {pos }}, 12$
$z, 12$
$z_{\text {neg }}, 12$
$z_{\text {pos }}, 12$
(, 64
), 64
., 225
[...], 248
$R B C$, xi
$\mathrm{x} \square$, xxiii
2-tuple, 64
absolute value, 237
absurd, 236
add, 240
addition, 226
adjective, xvii
Alfred Tarski, xix
alternate arrow notation, 99
amount, 4, 237
amount of stuff, 4
analysis, xxx
angle, 65, 138
application, xxx
Arnold, xv
arrow diagram, 67
arrow notation, 98
arrow-equality notation, 98
assert, xxvii
asymptotic expansion, xvi
AT, 15
axiom, xxvii
backward problem, 73
bar graph, 84
basic format, 138
basic picture, 79
believe, xxvii
bump, 186
calculate, xxii
calculus adjective, xvii
calculus grammar, xviii
calculus language, xvii
calculus noun, xvii
calculus sentence, xviii
calculus statement, xix
calculus verb, xvii
calculus word, xvii
Cantor, 2
cap, 10
capital script letters, 99
Cartesian setup, 80
Cartesian table, 70
Cauchy, xv
center, 46
change, 93
characterize, 193
click, xxv
closer, 31
collection, 2, 231, 236
collection of Input-marks, 101
collection of items, 2
collection of left-items, 65
collection of left-marks, 85
collection of left-numbers, 77
collection of numbers, 77
collection of Output-marks, 101
collection of related-pairs, 65
collection of relating-dots, 85
collection of right-items, 65
collection of right-marks, 85
collection of right-numbers, 77
column, 69
compactor, 53
comparison (plain), 239
comparison (signed), 239
complex number, 5
compute, xxii
concavity, 162
concavity-sign, 162
concavity-size, 162
conclusive, 117
connect, 63
constant, 9
continuous aspect, 4
control point, 220
count, 5, 231, 236
counting, 237
curve, 114
curve-intepolate, 124
cut-off input, 151
cutoff-size, 35
Da Vinci, xiii
data, 66
data point, 81
data-plot, 86
data-set, 65
decide, xix
decimal, 237
decimal approximation, xvi, 246
decimal number, 4, 232
decimal point, 4
decimal pointer, 233
declare, 13, 14
define, xxi
denominator, 2, 231
Descartes, 80
develop, xiii
digit, 6, 233
discrete aspect, 2
discrete function, 102
divide, 241
domain, 96
donut view, 120
dot-interpolate, 110
Einar Hille, xiv
element, 2, 3
employ, xvii
empty collection, 22
end of the line, 24
endless, 24
endorelation, 76
entity, xix, 231
equal-in-size, 30
equal-to (plain), 239
equal-to (signed), 239
equality notation, 98
equidistant, 229
error, 5
essence, 231
essential, 181
essential graph, 188
essential local extreme-height input, 184
essential on-screen graph, 188
essential onscreen graph, 187
estimate, 6

Etienne Ghys, xv
Eugene Wigner, xvii
evaluate, 15
even pole, 123
even zero, 145
execute, 13-15
executed expression, 214
exisential sentence, 20
existence, 188
explain, xx
explicit, 197
extended Cartesian setup, 114
extended number, 26
extremity, 164
factual evidence, xxvi
FALSE, xix
farther, 31
Fields Medal, xvi
figure, 7
finite input, 114
finite number, 36
finite output, 114
fixed number, 9
formula, 19
forward problem, 87
forward relation problem, 71
fraction, 5, 244
fractional number, 244
function, 94
functional, 94
Gödel, xxvii
Gödel's Completeness Theorem, xxvii
gap, 149
general statement, xxvi
generic given number, 9
generic individual expression, 15
George Sarton, xiv
given, xxiv
given number, 9
given point, 45
global expression, 12
global featur, 193
global graph, 115
global variable, 12
gradual, 109
grammar, xviii
graph, 66
height, 141, 146
height discontinuous, 148
height discontinuous at $x_{0}, 148$
Height height continuous at $x_{0}, 147$
Henri Poincaré, xvi
histogram, 84
hollow dot, 148
how many, 237
how much, 237
Hung-Hsi Wu, xii
hyperreal number, xvi
I-O notation, 98
I/O device, 95
iff, xxii
indeterminate number, 47
individual expression, 13
infinite input, 114
infinite number, 38
infinite output, 114
infinitesimal, xv
infinitesimal number, 37
infinity, 24
information, 3, 234
input, 95
input level-band, 126
Input-level-line, 101
Input-mark, 101
input-number, 95
input-output notation, 98

Input-ruler, 101
input/output device, 95
InputOutput-dot, 101
InputOutput-pair, 101
InputOutput-pair notation, 101
InputOutput-plot, 101
InputOutput-set, 101
integers, 238
intermediate relating dot, 110
IO-dot, 101
IO-pair, 101
IO-pair notation, 101
IO-plot, 101
IO-set, 101
irrational number, 5
item, 2, 231, 236
John Holt, xiv
join smoothly, 177, 187, 188
jump, 148
kink, 162
L'Hospital, xv
L'Hospital's Rule, xii
Lagrange, xvi
large variable, 38
larger than, 239
larger-size, 30
larger-than (plain), 239
larger-than (signed), 239
larger-than-or-equal-to (plain), 239
larger-than-or-equal-to (signed), 239
largest permissible error, 248
Laurent Schwartz, xxix
leading zero, 6
left, 56
left-item, 65
left-mark, 79
left-neighborhood, 55
left-number, 77
left-number level-line, 81
left-ruler, 79
Leibniz, xv
limit, xv, 152
list, 3
list table, 69
lnumber ine, 52
local arrow pair, 212
local executed expression, 213
local extreme-height input, 156, 159
local feature, 193
local frame, 130
local function, 204
local graph, 133
local height-sign, 142
local height-size, 143
local I-O rule, 204
local input-output arrow pair, 213
local input-output pair, 212-214
Local input-Output rule, 211
local Input-Output rule, 204, 210
local input-output rule, 212-214
local maximum-height input, 155, 157
local minimum-height input, 155, 158
localize, 204
locate, 103
Loomis, xii
lower cutoff-size, 35
lower end of the line, 25
Magellan circle, 28
Magellan height continuous at, 152, 170
Magellan view, 121
magnifier, 51
magnitude, 231, 237
max-min fluctuation, 187
mean, xix
meaningless, xxi
measure, 5
measured number, 6
median line, 126,128
Mercator, 54
Mercator view, 114
metalanguage, xvii
metric, 34
min-max fluctuation, 187
mixed number, 5
model theory, xx
modulus, 237
multiply, 241
Model Theory, xviii
natural, 236
natural deductive rule, xxvii
near 0,45
near $\infty, 46$
near-infinity number, 38
near-zero number, 38
nearby number, 45
nearby variable, 47
negative, 238
negative lower cutoff-number, 35
negative number, 230
negative range, 35
negative upper cutoff-number, 35
neighborhood, 46
Newton, xv
non-relating-dot, 81
non-zero digit, 6
non-zero number, 21
nonInputOutput -air, 101
nonInputOutput-dot, 101
nonIO-dot, 101
nonIO-pair, 101
norm, 237
not-equal-to (plain), 239
not-equal-to (signed), 239
notation, xxii
nothingness, 22
noun, xvii
number, 249
number line, 52
number phrase, 2
numeral, 231
numeral phrase, 231
numerator, 2, 231
numerical endorelation, 77
numerical sentence, 20
numerical value, 15,237
object language, xvii
odd pole, 123
odd zero, 145
offscreen, 114
offscreen graph, 115
on-off function, 151
one-point compactification, 28
onscreen graph, 115
open number, 8
opp, 238
ordered pair, 64
ordinary English, xvii
ordinary English adjective, xvii
ordinary English grammar, xviii
ordinary English noun, xvii
ordinary English sentence, xviii
ordinary English word, xvii
orientation, 233, 237
origin, 28,229
out-of-range, 35
output, 95
output level-band, 128
Output-level-line, 101
Output-mark, 101
output-number, 95
Output-ruler, 101
override, 154
pair, 64
pair notation, 64
pairing-arrow, 67
pairing-dot, 81
pairing-link, 79
paper world, xvii, 231
parenthesis, 64
parity, 123,145
pathological, xii
pdf, xxv
picture, 229
place, 11
plain, 236
plain decimal number, 4
plain decimal numeral, 233
plain whole number, 3
plain whole numeral, 232
plain-dot, 81
plot, 82
Poincaré expansion, xvi
point, 45
pointwise format, 198
pole, 101, 108, 123
polynomial approximation, xvi
positive, 238
positive integer, 236
positive lower cutoff-number, 35
positive number, 230
positive range, 35
positive upper cutoff-number, 35
postulate, xxvii
precise, xix
proposition, 20
prove, xxvii
proximate on-screen graph, 188
qualifier, 234
qualitative, 238
quality, 2
qualtative information, 231
quantitative, 237
quantitative information, 231
quantity, 2
quasi-height continuous at, 154
quincunx, 86
rational number, 5
real number, 5, 243
real real numbers, 249
real world, xi
real world number, 249, 250
reason, xxiv
reasonable signed decimal number, 8
reciprocal (plain), 241
reciprocal (signed), 242
refer, xix
related-pair, 65
related-pair notation, 65
relating-dot, 81
relation, 64
relation problem, 71
relative, 251
removable height discontinuity at, 154
remove, 154
required number, 10
return, 95
Reverse Polish Notation, 98
right, 56
right-item, 65
right-mark, 79
right-neighborhood, 55
right-number, 77
right-number level-line, 81
right-ruler, 79
rigor, xxix
Robinson, xv
root, 244
root number, 244
row, 69
RPN, 98
rule, 228
ruler, 229
say, xix
scale, 229
screen, 80
semantics, xix
semi-global variable, 12
send, 99
sentence, xviii
set, 2,3
side, 230
side-neighborhoods, 55
sided local graph box, 173
sign, 230, 238
signed, 237
signed decimal number, 4
signed decimal numeral, 233
signed number, 5
signed whole number, 3
signed whole numeral, 233
significant digit, 7
Silvanus Thompson, xii
size, 237
size-comparie, 30
size-range, 34
slope-sign, 159
slope-size, 161
small variable, 37
smaller than, 239
smaller-size, 30
smaller-than (plain), 239
smaller-than (signed), 239
smaller-than-or-equal-to (plain), 239
smaller-than-or-equal-to (signed), 239
smooth, 192
smooth continuation, 122
source, 66
sparse, 78
specify, 10
Spivak, 93
stand, xx
stuff, 4, 237
subtract, 241
subtraction, 226
supplement, 154
symbol, xxii
symmetrical, 230
syntactics, xviii
table, 69
target, 66
Terence Tao, 34
the opposite, 238
the same, 238
theorem, xxvii
theory, xxvii
thicken, 46
tickmark, 229
Timothy Gowers, 6
tolerance, 10
trailing zero, 6
transition, 151
transition function, 151
TRUE, xix
trust, xxvii
truth value, xix
tube view, 119
two-point compactification, 27
uncertainty, 6
Underwood Dudley, xi
undetermined, 40
unit, 232
unit of stuff, 4
universal sentence, 20
unrelated-pair, 65
upper cutoff-size, 35
upper end of the line, 25
use, xiii
variable, 11

Venn diagram, 67
verb, xvii
whole, 236
whole number, 3,231
width, 126, 128
wiggle, 186
word, xvii
Zero, 21
zero (of a function), 100
Chapter 0 Reasonable Numbers 1
Numbers In The Real World, 2.
1.1. Discrete aspect of the real world. 2
1.2. Continuous aspect of the real world. 4
1.3. Whole numbers vs. decimal numbers. 5
Issues With Decimal Numbers, 6.
2.1. How many digits in a number. 6
2.2. Importance of the digits. 7
2.3. Issues with significant digits. 8
Giving Numbers, 8 .
3.1. Open numbers vs. fixed numbers 8
3.2. Generic given numbers. 9
3.3. Specifying an amount of stuff. 10
3.4. Variables. 11
Expressions And Values, 12.
4.1. Global expressions. 12
4.2. Individual expressions. 13
4.3. Evaluation $A T$ a given number. 15
Formulas And Sentences, 18.
5.1. Formulas. 18
5.2. Sentences 19
Zero And Infinity, 21.
6.1. Zero 21
6.2. Infinity. 24
6.3. Are ∞ and $\mathbf{0}$ reciprocal? 24
Compactifying Numbers, 25 .
7.1. Numbers and zero. 25
7.2. Numbers and infinity 26
7.3. Extended numbers 26
7.4. Compactifications. 27
Size Of Numbers, 29.
8.1. Size-comparing signed numbers. 29
8.2. Giveable numbers. 32
8.3. Off-range numbers 37
8.4. Adding and subtracting qualitative sizes. 40
8.5. Multiplying qualitative sizes. 41
8.6. Dividing qualitative sizes 41
8.7. Reciprocal of a qualitative size. 42
Neighborhoods - Local Expressions, 44.
9.1. Points 45
9.2. Nearby numbers. 45
9.3. Evaluation near a given point. 47
9.4. Picturing a neighborhood of $\mathbf{0}$ 51
9.5. Picturing a neighborhood of ∞. 52
9.6. Picturing a neighborhood of $\boldsymbol{x}_{\mathbf{0}}$. 54
9.7. Side-neighborhoods. 55
9.8. Interplay between $\mathbf{0}$ and ∞ 58
Chapter 1 Relations Given By Data 63
Relations Given By Data-sets, 64.
1.1. Ordered pairs. 64
1.2. Data-sets 65
1.3. Arrow diagrams, list, tables 67
1.4. Forward and backward problems. 71
1.5. Endorelations. 75
1.6. Numerical relations 76
1.7. Numerical endorelations 77
Relations Given By Data-plots, 79.
2.1. Basic picture. 79
2.2. Cartesian picture. 80
2.3. Rulers vs. axes. 84
2.4. Picturing data-sets with data-plots. 85
2.5. Solving forward problems. 87
2.6. Solving backward problems. 90
Chapter 2 Functions Given Graphically 93
To See Change, 93.
1.1. To be or not to be functional. 94
1.2. Language for functions. 97
1.3. Zeros and poles. 100
Functions Given By Input-Output Plots, 101.
2.1. Cartesian language for functions. 101
2.2. Solving forward problems. 103
2.3. Solving backward problems 105
2.4. Zeros 108
2.5. Poles. 108
2.6. Discrete Calculus. 109
Functions Given By Curves, 114.
3.1. Mercator view. 114
3.2. Limitations of the Mercator view 116
3.3. Compact views. 119
3.4. OK so far - OK so far - OK so far - OK so far 122
3.5. Pole of a function. 123
3.6. Interpolating plots into curves? 124
3.7. Curve-Interpolating I-O plots. 124
3.8. Basic Expository Problem. 125
Local Graphs, 126.
4.1. Input level-band. 126
4.2. Output level-band. 128
4.3. Local frame. 130
4.4. Local graph near a point 133
4.5. Local graph near x_{0} 134
4.6. Local graph near ∞ 135
4.7. Facing the neighborhood. 137
4.8. Local code. 138
Chapter 3 The Looks Of Functions 141
Height, 141.
1.1. Local height near a given point. 142
1.2. Local height-sign. 142
1.3. Height-size 143
1.4. Parity of zeros and poles 145
1.5. Local height near ∞ 146
Height-continuity, 147.
2.1. Height-continuity at \boldsymbol{x}_{0}. 147
2.2. Height-discontinuity at x_{0}. 148
2.3. Magellan height-continuity at \boldsymbol{x}_{0} 152
2.4. Height-continuity at ∞ 152
2.5. Magellan height-continuity at ∞. 153
2.6. Quasi height-continuity at $\boldsymbol{x}_{\mathbf{0}}$. 154
Local Extremes, 154.
3.1. Local maximum-height input 155
3.2. Local minimum-height input. 155
3.3. Local extreme-height input. 156
3.4. Optimization problems. 156
3.5. Local extreme 157
3.6. Local maximum-height input. 157
3.7. Local minimum-height input. 158
3.8. Local extreme-height input. 159
3.9. Optimization problems. 159

Slope, 159.

$$
\text { 4.1. Slope-sign. } 159
$$

4.2. Slope-size 161
Slope-continuity, 162.
5.1. Tangent 162
Concavity, 162.
6.1. Concavity-sign 162
6.2. 0-concavity input. 163
Concavity-continuity, 166.
7.1. Osculating circle. 166
7.2. Dealing with poles 166
7.3. At ∞ 168
7.4. Magellan height-continuity at a pole $\boldsymbol{x}_{\mathbf{0}}$. 170
Feature Sign-Change Inputs, 170.
8.1. height sign-change input 170
8.2. Slope sign-change input 171
8.3. Concavity sign-change input 172
8.4. Offscreen graph. 174
8.5. Sided local frame. 178
Essential Feature-Sign Changes Inputs, 181.
9.1. Essential sign-change input 181
9.2. more complicated 183
9.3. non-essential 184
9.4. Essential Extreme-Height Inputs 184
9.5. Non-essential Features 185
9.6. The essential onscreen graph. 188
EmptyA, 191.
10.1. EmptyAa 191
10.2. EmptyAb 191
10.3. EmptyAc 192
EmptyB, 192.
11.1. EmptyBa 192
11.2. EmptyBb 192
11.3. EmptyBc 192
Start, 193.
12.1. substart 193
Chapter 4 Input-Output Rules 197
Giving Functions Explicitly, 197.
1.1. Global Input-Output Rules 197
1.2. Format Input-Output pairs. 198
Output AT A Given Number., 199 • A Few Words of Caution Though.,203 - Outputs Near A Given Number, 204.
4.1. Output(s), if any, for inputs NEAR a given number. 204
4.2. Output(s), if any, for inputs NEAR ∞. 209
Local Input-Output Rule, 210.
5.1. \quad Near ∞ 212
5.2. Near 0 214
5.3. Near x_{0} 216
5.4. A Few Words of Caution Though. 219
Towards Global Graphs., 220.
6.1. Foward problems 220
6.2. Reverse problems. 220
6.3. Global graph. 220
6.4. Need for Power Functions. 221
Appendix A Dealing With Decimal Numbers 225
Computing With Non-Zero Numbers, 225.
1.1. Comparing (non-zero) numbers 225
1.2. Adding and subtracting (non-zero) numbers. 226
1.3. Multiplying and dividing (non-zero) numbers. 227
1.4. Operating with more than two (non-zero) numbers 227
Picturing Numbers, 229 • Real World Numbers - Paper World Numerals, 231.
3.1. Magnitude of collections of items 231
3.2. Magnitude of amounts of stuff. 232
3.3. Orientation of entities. 233
3.4. Concluding remarks 233
Things To Keep In Mind, 235.
4.1. Positive numbers vs. plain numbers. 235
4.2. Symbols vs. words. 236
Plain Whole Numbers, 236.
5.1. Size and sign. 237
Comparing., 239 • Adding and Subtracting, 240 • Multiplying andDividing, 241.
8.1. Reciprocal of a number. 241
Appendix B Real Numbers 243
What are the real numbers?, 243.
1.1. Title. 243
1.2. Fractions and roots. 244Calculating with real numbers., 245.
2.1. Title. 245
Approximating Real Numbers, 246.
3.1. Approximating. 246
3.2. Approximation error. 247
The Real Real Numbers Are The Regular Numbers, 248.
4.1. Title. 248
4.2. Real world numbers. 249
Appendix C Localization 251
Appendix D Equations - Inequations 253
Appendix E Addition Formulas 255Dimension $n=2:\left(x_{0}+h\right)^{2}$ (Squares), 255.
Appendix F Polynomial Divisions 257
Division in Descending Exponents, 257.
Appendix G Systems of Two First Degree Equations in Two Unknowns 259
General case, 259.
Appendix H List of Agreements 261
Appendix I List of Cautionary Notes 263
Appendix J List of Definitions 265
Appendix K List of Language Notes 267
Appendix L List of Theorems 269
Appendix MList of Procedures 271
Appendix N List of Demos 273
Index 277

[^0]: ${ }^{1}$ Clicking on anything in reddish characters will get you within at most a short scrolling distance from the relevant place and just hovering will show you a picture thereof.

[^1]: ${ }^{2}$ Professional pianists have to exhibit their technique before anything else.
 ${ }^{3}$ French chefs have often been accused of stealing from cuisinières.
 ${ }^{4}$ https://en.wikipedia.org/wiki/Boundary_value_problem.

[^2]: ${ }^{5}$ Bulletin of the American Mathematical Society, Vol 47 Number 1 Pages 139-144
 ${ }^{6}$ https://en.wikipedia.org/wiki/Denis_Serre.
 ${ }^{7}$ https://en.wikipedia.org/wiki/Underwood_Dudley
 ${ }^{8}$ Here is the actual review in its entirety: 'The book by Simmons is a fine one. It was written with care and intelligence. It has good problems, and the historical material is almost a course in the history of mathematics. It is nicely printed, well bound, and expensive. Future historians of mathematics will look back on it and say, 'Yes, that is an excellent example of a late twentieth-century calculus book. "").
 ${ }^{9}$ https://www.maa.org/sites/default/files/0002989051112.di991736.99p03667. pdf

[^3]: ${ }^{10}$ https://en.wikipedia.org/wiki/Elias_Loomis
 ${ }^{11}$ Free at https://archive.org/details/elementsofdiffer00loom/page/n4/mode/ 2up
 ${ }^{12}$ https://en.wikipedia.org/wiki/Pathological_(mathematics)\#Pathological_ examples
 ${ }^{13}$ https://en.wikipedia.org/wiki/Silvanus_P._Thompson
 ${ }^{14}$ Free at https://archive.org/details/CalculusMadeEasy/page/n4/mode/2up.
 ${ }^{15}$ https://math. berkeley. edu/~wu/
 ${ }^{16}$ https://www.nytimes.com/2014/07/27/magazine/why-do-americans-stink-at-math. html

[^4]: ${ }^{17}$ http://www.ams.org/notices/201505/rnoti-p508.pdf
 ${ }^{18}$ https://www.azquotes.com/author/15101-Leonardo_da_Vinci
 ${ }^{19}$ https://en.wikipedia.org/wiki/Main_Page

[^5]: ${ }^{20}$ https://en.wikipedia.org/wiki/Einar_Hille
 ${ }^{21}$ Einar Hille, Analysis, 1964
 ${ }^{22}$ https://en.wikipedia.org/wiki/George_Sarton
 ${ }^{23}$ As quoted from his letters by his daughter, May Sarton, in her book I Knew a Phoenix
 ${ }^{24}$ https://en.wikipedia.org/wiki/John_Holt_(educator)
 ${ }^{25}$ John Holt How Children Fail A classic, first published in the 60s. Free download from https://archive.org/download/HowChildrenFail/HCF.pdf

[^6]: ${ }^{26}$ https://en.wikipedia.org/wiki/\%C3\%89tienne_Ghys
 ${ }^{27}$ Etienne Ghys, A singular mathematical promenade. 2017. Free download from https://arxiv.org/abs/1612.06373
 ${ }^{28}$ https://en.wikipedia.org/wiki/History_of_calculus

[^7]: ${ }^{a}$ https://en.wikipedia.org/wiki/Isaac_Newton
 ${ }^{b}$ https://en.wikipedia.org/wiki/Infinitesimal
 ${ }^{c}$ https://en.wikipedia.org/wiki/Limit_(mathematics)
 ${ }^{d}$ https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
 ${ }^{e}$ https://en.wikipedia.org/wiki/Guillaume_de_1\% $27 \mathrm{H} \% \mathrm{C} 3 \%$ B4pital
 ${ }^{f}$ https://en.wikipedia.org/wiki/The_Analyst\#Ghosts_of_departed_ quantities
 ${ }^{g}$ https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
 ${ }^{h}$ https://en.wikipedia.org/wiki/Calculus\#Limits_and_infinitesimals ${ }^{i}$ https://en.wikipedia.org/wiki/Abraham_Robinson
 ${ }^{j}$ https://en.wikipedia.org/wiki/Fields_Medal)
 ${ }^{k}$ https://en.wikipedia.org/wiki/Hyperreal_number
 ${ }^{l}$ https://arxiv.org/pdf/2210.07958.pdf
 ${ }^{m}$ https://en.wikipedia.org/wiki/Edwin_Hewitt
 ${ }^{n}$ https://en.wikipedia.org/wiki/Vladimir_Arnold
 ${ }^{o}$ https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange
 ${ }^{p}$ https://en.wikipedia.org/wiki/Henri_Poincar\%C3\%A9
 ${ }^{q}$ https://en.wikipedia.org/wiki/Asymptotic_expansion

[^8]: ${ }^{a}$ https://www.mycarpentry.com/carpentry-terms.html

[^9]: ${ }^{14}$ https://en.wikipedia.org/wiki/Metalanguage
 ${ }^{15}$ (https://en.wikipedia.org/wiki/Noun
 ${ }^{16}$ https://en.wikipedia.org/wiki/Adjective
 ${ }^{17}$ https://en.wikipedia.org/wiki/Verb

[^10]: ${ }^{18}$ https://plato.stanford.edu/entries/modeltheory-fo/
 ${ }^{19}$ https://en.wikipedia.org/wiki/Grammar
 ${ }^{20}$ https://en.wikipedia.org/wiki/Sentence_(linguistics)
 ${ }^{21}$ https://en.wikipedia.org/wiki/Syntax

[^11]: ${ }^{a}$ Actually a legal term: https://en.wikipedia.org/wiki/Criminal_conversation
 ${ }^{b}$ https://en.wikipedia.org/wiki/Nicolas_Freeling

[^12]: ${ }^{a}$ https://en.wikipedia.org/wiki/The_Moon_is_made_of_green_cheese

[^13]: ${ }^{22}$ https://en.wikipedia.org/wiki/Semantics
 ${ }^{23}$ https://en.wikipedia.org/wiki/Meaning_(philosophy)\#Truth_and_meaning
 ${ }^{24}$ https://en.wikipedia.org/wiki/The_real_McCoy
 ${ }^{25}$ https://en.wikipedia.org/wiki/Semantic_theory_of_truth
 ${ }^{26}$ https://en.wikipedia.org/wiki/Alfred_Tarski

[^14]: ${ }^{27}$ https://www.researchgate.net/publication/346528673_A_Model_Theoretic_ Introduction_To_Mathematics_4th_edition

[^15]: ${ }^{28}$ https://en.wikipedia.org/wiki/Mathematical_notation
 ${ }^{29}$ https://en.wikipedia.org/wiki/Calculation
 ${ }^{30}$ https://en.wikipedia.org/wiki/Mathematical_notation

[^16]: ${ }^{a}$ https://en.wikipedia.org/wiki/If_and_only_if

[^17]: Pace English teachers!

[^18]: ${ }^{31}$ https://en.wikipedia.org/wiki/Identification_friend_or_foe
 ${ }^{31}$ https://en.wikipedia.org/wiki/Paul_Halmos

[^19]: ${ }^{33}$ https://www.adobe.com/acrobat/about-adobe-pdf.html

[^20]: ${ }^{34}$ https://en.wikipedia.org/wiki/Verification_and_validation

[^21]: ${ }^{35}$ https://en.wikipedia.org/wiki/Theory\#Mathematical
 ${ }^{36}$ https://www.thefreedictionary.com/postulate
 ${ }^{37}$ https://en.wikipedia.org/wiki/Axiom
 ${ }^{38}$ https://en.wikipedia.org/wiki/Natural_deduction
 ${ }^{39}$ https://www.researchgate.net/publication/346528673_A_Model_Theoretic_ Introduction_To_Mathematics_4th_edition
 ${ }^{40}$ https://en.wikipedia.org/wiki/G\%C3\%B6del\%27s_completeness_theorem

[^22]: ${ }^{41}$ https://en.wikipedia.org/wiki/G\%C3\%B6del\%27s_incompleteness_theorem
 ${ }^{42}$ https://www.quantamagazine.org/why-mathematical-proof-is-a-social-compact-20230831/ ?mc_cid=0ade39707d
 ${ }^{43}$ https://en.wikipedia.org/wiki/Conjecture

[^23]: ${ }^{a}$ https://en.wikipedia.org/wiki/Theory\#Scientific

[^24]: ${ }^{a}$ https://en.wikipedia.org/wiki/Dirac_delta_function

[^25]: ${ }^{44}$ https://en.wikipedia.org/wiki/Rigour\#Mathematical_rigour

[^26]: ${ }^{45}$ https://en.wikipedia.org/wiki/Real_analysis
 ${ }^{46}$ https://en.wikipedia.org/wiki/Modus_operandi
 ${ }^{47}$ https://en.wikipedia.org/wiki/Hard_and_soft_science

[^27]: ${ }^{14}$ As discussed very thoroughly in https://history.stackexchange.com/questions/ 45470/source-of-quote-attributed-to-w-e-b-du-bois-when-you-have-mastered-numbers? rq=1, this famous quote is not from W.E.B. Dubois, as often asserted-with no reference, but from page 151 of Managing, Chapter Nine - The Numbers, Geneen's book.
 ${ }^{15}$ (https://en.wikipedia.org/wiki/Harold_Geneen.)

[^28]: ${ }^{a}$ https://en.wikipedia.org/wiki/Photon

[^29]: ${ }^{16}$ https://en.wikipedia.org/wiki/Georg_Cantor
 ${ }^{17}$ https://en.wikipedia.org/wiki/Set_theory
 ${ }^{18}$ https://en.wikipedia.org/wiki/Naive_set_theory

[^30]: ${ }^{a}$ Actually, the original English translations for Cantor's word "Menge" was the word collection. As for the word element, see for instance https://english.stackexchange.com/questions/85648/ what-are-the-differences-between-element-and-item-regarding-a-list

[^31]: ${ }^{19}$ https://en.wikipedia.org/wiki/Information
 ${ }^{20}$ https://en.wikipedia.org/wiki/Discrete_mathematics

[^32]: ${ }^{a}$ See Example 0.16 (Page 10)

[^33]: ${ }^{21}$ https://en.wikipedia.org/wiki/Formula\#In_computing

[^34]: ${ }^{a}$ https://en.wikipedia.org/wiki/Formula\#In_computing
 ${ }^{b}$ https://en.wikipedia.org/wiki/Equation

[^35]: ${ }^{22}$ https://en.wikipedia.org/wiki/O\#Classical_antiquity

[^36]: ${ }^{23}$ https://en.wikipedia.org/wiki/Natural_number

[^37]: ${ }^{24}$ https://en.wikipedia.org/wiki/Infinity

[^38]: ${ }^{25}$ https://www.cantorsparadise.com/two-compactification-theorems-6a73b11ea908

[^39]: ${ }^{a}$ https://www. youtube.com/watch?v=0fKBhvDjuy0
 ${ }^{b}$ http://terrytao.files.wordpress.com/2010/10/ cosmic-distance-ladder.pdf

[^40]: ${ }^{a}$ https://en.wikipedia.org/wiki/Finite_number)

[^41]: ${ }^{a}$ https://en.wikipedia.org/wiki/Six_degrees_of_separation

[^42]: ${ }^{17}$ https://medium.com/@nikitavoloboev/everything-connects-to-everything-else-c6a2d96a809d According to https://quoteinvestigator.com/2022/03/31/connected/ however, the earliest published version is from Gotthold Ephraim Lessing in 1769.

[^43]: ${ }^{18}$ https://en.wikipedia.org/wiki/Ordered_pair

[^44]: ${ }^{19}$ https://en.wikipedia.org/wiki/Venn_diagram

[^45]: ${ }^{20}$ https://en.wikipedia.org/wiki/Homogeneous_relation

[^46]: ${ }^{21}$ https://en.wikipedia.org/wiki/Ren\%C3\%A9_Descartes
 ${ }^{22}$ https://en.wikipedia.org/wiki/Analytic_geometry
 ${ }^{23}$ https://en.wikipedia.org/wiki/Algebra
 ${ }^{24}$ https://en.wikipedia.org/wiki/Geometry

[^47]: ${ }^{25}$ https://en.wikipedia.org/wiki/Quincunx

[^48]: ${ }^{26}$ https://en.wikipedia.org/wiki/Plotter) directly on a Cartesian setup

[^49]: ${ }^{18}$ Calculus, 4th edition. Publish or Perish Press.
 ${ }^{19}$ https://en.wikipedia.org/wiki/Michael_Spivak
 ${ }^{20}$ https://royalsocietypublishing.org/doi/10.1098/rstl.1815.0024

[^50]: ${ }^{21}$ https://en.wikipedia.org/wiki/Function_(mathematics)
 ${ }^{22}$ https://en.wikipedia.org/wiki/Input/output

[^51]: ${ }^{23}$ https://en.wikipedia.org/wiki/Zero_of_a_function

[^52]: ${ }^{24}$ https://en.wikipedia.org/wiki/Discrete_calculus
 ${ }^{25}$ https://en.wikipedia.org/wiki/Interpolation

[^53]: ${ }^{26}$ https://en.wikipedia.org/wiki/Interpolation

[^54]: ${ }^{27}$ https://en.wikipedia.org/wiki/Curve
 ${ }^{28}$ https://en.wikipedia.org/wiki/Mercator_projection

[^55]: ${ }^{29}$ https://en.wikipedia.org/wiki/List_of_map_projections

[^56]: ${ }^{30}$ https://en.wikipedia.org/wiki/Curve_fitting

[^57]: ${ }^{31}$ The plot appears on the back cover of Strang's Calculus, 1991, Wellesley-Cambridge Press, where it is discussed in Section 1.6 A Thousand Points of Light, pages 34-36.

[^58]: ${ }^{1}$ The absolute silence maintained by Educologists in this regard is rather troubling.

[^59]: ${ }^{2}$ Educologists will surely appreciate "Sign-slope $f=/$ iff Sign-heigth $f^{\prime}=+$ ".

[^60]: ${ }^{3}$ Educologists will surely appreciate "Sign-concavitye $f=\cup$ iff Sign-heigth $f^{\prime \prime}=+$ ".

[^61]: "The real number system $(\mathbb{R} ;+; \cdot ;<)$ can be defined axiomatically [...] There are also many ways to construct "the" real number system, for example, starting from whole numbers, (https://en.wikipedia.org/wiki/ Natural_number) then defining rationalnumbers algebraically (https://en.

[^62]: ${ }^{1}$ https://www.dpmms.cam.ac.uk/~wtg10/decimals.html

