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The pure mathematician’s view
is, It’s not what you know, it’s
what you can prove. The
difficulty with this view is that
it is very hard to prove
something before you know what

you need to prove. .
rigorous

Jacob Rubinstein'

Preface

Language., xv e Rigor., xv e Exercises., xv e Proof/Belief., xv .

This is for the prospective reader because, before anything else, they 1h¢ usual preface s for
convincing teachers that the

should be made aware of what it is that they may be about to get into. .

; ) ) book is what they want for
Indeed, in many deep ways, this text is truly very different from the usual that class they are going to
CALCULUS textbooks. teach next semester.

1 Language.
2 Rigor.
3 Exercises.

4 Proof/Belief.

The first thing is that this is not a rigorous text. One reason is that the
CALCULUS is extraordinarily difficult to present rigorously (https://en.
wikipedia.org/wiki/Calculus#Foundations). For instance, it was only
in 1950 that “Delta functions” (https://en.wikipedia.org/wiki/Dirac_
delta_function) were made rigorous by Laurent Schwartz—for which he
was awarded the Fields Medal?

In fact, rigorous presentations go under the name of ADVANCED CALCU-
LUS or REAL ANALYSIS and, for what it’s worth, most CALCULUS textbooks
just skip the many long, hard parts of ADVANCED CALCULUS.

'Bulletin of the American Mathematical Society, Volume 55, Number 1, January 2018,
Pages 123-129 (http://dx.doi.org/10.1090/bull/1581)

20One of the very highest honors for a mathematician. (https://en.wikipedia.org/
wiki/Fields_Medal)

XV
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xvi Preface

e to pay for the book have that downloading the pdf is free and that they can print it freely.
é“&%]% choosing thetvob—=—====—0K SO FAR======—==—=
informal This text is for “just plain folks” who want to learn CALCULUS and it’s
free.

—So, what’s this “Not a Preface” all about?

—Mostly a bit of advice on how to use this text.

—OKk, let’s have it.

—One way this book is different is because it was designed to be read
onscreen rather than on paper.

—Wohat’s the point?

—When we read a scientific text, to really make sense of what we read
we need to remember the eract meaning of each and every word. Which is
impossible. Which is why all scientific texts have an index to let you find
where each word, in bold black, was explained. But in this text, onscreen,
just clicking on any word in red-black will also get you there.

—1I guess. So what’s the advice?

—Start at the beginning. Don’t skip. Don’t go ahead until things make
sense. Don’t even try to remember what a word means, just click.

—You said “one way this text is different”, what about the other ways?

561}67 mind that those who

—Because, in contrast with most textbooks which present the CALCULUS
from the mathematician’s point of view, this text aims at the informal CAL-
CULUS that physicists, chemists, biologists (https://en.wikipedia.org/
wiki/Hard_and_soft_science), and engineers have been using for a very
long time—and are still using.

In particular, but most importantly, “infinitesimals” were routinely used
informally from 1684 on by physicists—as well as by mathematicians—even
though it was realized almost from the start that “infinitesimals” were not
rigorous (https://en.wikipedia.org/wiki/Non-standard_analysis). And
when, some two centuries later, “limits” were finally made rigorous and
most mathematicians stopped using “infinitesimals” in favor of “limits”,
physicists, and for a long time even differential geometers, kept using “in-
finitesimals” because they are being closer to the real world (https://en.
wikipedia.org/wiki/Calculus#Limits_and_infinitesimals).

In any case, in 1961, Abraham Robinson, three years over the age limit
for the Fields Medal, made “infinitesimals” rigorous (https://en.wikipedia.
org/wiki/Abraham_Robinson). In spite of which, most textbooks still avoid
“infinitesimals” like the plague!

Yet, as Vladimir Arnold (https://en.wikipedia.org/wiki/Vladimir_
Arnold) wrote in 1990: “Nowadays, when teaching analysis, it is not very

Surprise, surprise!
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4. Proof/Belief. xvii

popular to talk about infinitesimal quantities. Consequently present-day stu-
dents are not fully in command of this language. Nevertheless, it is still
necessary to have command of it.” (https://en.wikipedia.org/wiki/
Infinitesimal)

All this to say that, if this text doesn’t follow current fashions, it is
nevertheless rooted in rigorous mathematics.

—Whew! All this to say just that! That was dense. Any other reason
why I should buy your book?

—Remember, you can download this text for free and print it if you
want. So, just keep on reading and make up your mind yourself

—That it?

—No. Another way this text is free is that it is open source. So, after
you got something you first had trouble with, after you got it your way, you
can put that way on http://freemathtexts.org/ to help others. Another
way it’s different.


https://en.wikipedia.org/wiki/Infinitesimal
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What is important is the real
world, that is physics, but it
can be explained only in
mathematical terms.

Dennis Serret

Chapter 1

Numbers

Numbers for what?, 1 e Plain Whole Numbers, 2 e Plain Decimal
Numbers, 3 e Signed Numbers, 6 e Computing With Given Numbers,
10 e Picturing Given Numbers, 13 e Nearby Numbers , 14

e Comparing Given Numbers, 17 o Qualitative Sizes, 21 e Real
World Numbers, 26 e Picturing small numbers, 28 o Picturing large
numbers, 28 o Infinity, 28 e Picturing Small Numbers, 30 e Picturing
Large Numbers, 34 e Computing With Qualitative Sizes, 37 e Real
Numbers, 40 e Decimal Approximations, 42

The point of this first chapter is to discuss aspects of numbers usually
not given much attention in ARITHMETIC textbooks but which are at the
heart of their relationship to the real world and therefore most relevant to
the CALCULUS ACCORDING TO THE REAL WORLD.

1 Numbers for what?

There are many different sets of numbers, each used for many different
purposes, but “the rest of us” give numbers as information to describe
what we have or to specify what we want. More precisely, in the real world,
depending on:

9Bulletin of the AMS, Vol 47 Number 1 Pages 139-144

real world
number

set

given
information
describe
specify

In other words, nowhere near
the obligatory “Review of
things you oughtn’t to have
forgotten” in standard text-
books.



way

magnitude

count

plain whole number
counting number
natural number
positive integer

Scientists other than physi-
cists just say “quantity”.

At least, “counting” reminds
us of how we get them but
“natural 7¢

2 Chapter 1. Numbers

A. What kind of real world object we want to describe or specify
namely:

» A collection of items that we can deal with one at a time,
or
» An amount of stuff that we can deal with only in bulk,

and
B. What kind of information we want to give about the object namely:

» The magnitude of the object,
or
» The magnitude of the object together with the way (as in “two-

way street”) the object goes.
we only use numbers from the following four sets of numbers:

Collections of items Amounts of stuff
Magnitude | Plain whole numbers | Plain decimal numbers
Magnitude and Way | Signed whole numbers | Signed decimal numbers

LANGUAGE 1.1 Amount is what physicists call “physical quantity”.

LANGUAGE 1.2 Way is not a very good word but neither is “direction”
unless we are willing to say “one of two opposite directions”.

2 Plain Whole Numbers

Because we can deal with items one at a time, both describing and specifying
how many items there are in a collection are easy: we just count the items.
Then, how many items are in the collection will be given by a plain whole
number.

EXAMPLE 1.1. Apples are items. (We can eat apples one at a time.) To
say how many @ are in the collection @ @ @ we count them that is we point
successively at each @ while singsonging “one, two, three”.

LANGUAGE 1.3 Plain whole numbers are also called counting
numbers and natural numbers (https://en.wikipedia.org/wiki/
Natural_number).


https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number
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LANGUAGE 1.4 Plain whole numbers are also called positive integers
(https://en.wikipedia.org/wiki/Integer)

The caLcuLUs, though, is not concerned with collections of items and
only with amounts of stuff and so we will use whole numbers only occasion-
ally, mostly as a backdrop for decimal numbers.

3 Plain Decimal Numbers

Because we can only deal with stuff in bulk, both describing and specifying
how much stuff there is in an amount are quite a bit more complicated than
for collections of items. There are two complications.

1. Units. The first complication is that before we can describe or
specify an amount of stuff we must decide on a unit amount of that stuff.
Indeed, “The Weights and Measures Division promotes uniformity in U.S.
weights and measures laws, regulations, and standards to achieve equity
between buyers and sellers in the marketplace” (https://www.usa.gov/
federal-agencies/weights-and-measures-division)

Then, how much stuff is in an amount will be given by a plain decimal
number of units of that stuff.

EXAMPLE 1.2. Milk is stuff that we drink and before we can describe or
specify how much milk we must decide on a unit of milk, for instance liters of
milk. Then, for instance, how much milk could be 6.4 liters of milk.

To help remind ourselves that we are talking about plain decimal num-
bers rather than plain whole numbers,

AGREEMENT 1.1 The decimal point will never go without saying in
this text.

EXAMPLE 1.3. We will always distinguish the plain decimal number 27.
which we would give to describe of specify an amount of stuff from the plain
whole number 27 which we would give to describe or specify a collection of
items.

unit

plain decimal number
“Positive integer” makes
sense but only to .. teachers
since only they already know
what integers are.


https://en.wikipedia.org/wiki/Integer
https://www.usa.gov/federal-agencies/weights-and-measures-division
https://www.usa.gov/federal-agencies/weights-and-measures-division

measure
uncertainty

4 Chapter 1. Numbers

2. To err is human. The second complication is a lot harder to
deal with because for an amount of stuff, specifying how much we want and
describing how much we have involve different issues.

a. To describe an amount of stuff, the complication is that we have to
measure this amount of stuff so that there will always be some uncertainty
about the measured plain decimal number because of things such as the
quality of the equipment used to measure the amount, the ability of the
person doing the measurement, etc.

EXAMPLE 1.4. We cannot really say “we have 2.3 quarts of milk" because
what we really have depends on the care with which the milk was measured.
The uncertainty may of course be too small to matter ... but then may not.

As Timothy Gowers, Fields Medal 1998, put it (6" paragraph of https:
//www.dpmms . cam.ac.uk/~wtgl0/continuity.html.), “a measurement of
a physical quantity will not be an eractly accurate infinite decimal. Rather,
it will usually be given in the form of a finite decimal together with some
error estimate: x = 3.14+0.02 or something like that.”?> [Where 3.14 +0.02
is to be read as 3.14+ some error smaller than 0.02]

b. To specify an amount of stuff, the complication then is that while, in
the case of a collection of items
» the plain whole number given to specify how many
items we want,
will never differ from
» the plain whole number counted to describe how many
items we get

in the case of an amount of stuff,
» the plain decimal number given to specify how much
stuff we want.
will always differ by some plain error from
» the plain decimal number measured to describe how
much stuff we get

In other words:

NOTE 1.1 A plain decimal number by itself can never specify an
amount of stuff.

2At this time most of Gowers’ paper will be much too hard to read but even a cursory
glance will show that our concern with the real world is quite the same as his.
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EXAMPLE 1.5. We cannot say “6.4 quarts of milk” without also saying
how big a plain error we are willing to put up with. A spoonful? A quart?

c. However, not all differences are significant, that is carry information
that is relevant to the real world situation.

EXAMPLE 1.6. The difference between $3. and $8. is the same as the
difference between $1 000 000 003. and $1 000 000 008., namely $5.. However,
while the difference between $3. and $8. is significant because $5. is in the same
range as $3. and $8., the difference between $1 000 000 003. and $1 000 000 008.
is ... insignificant because $5. is much smaller than both $1 000000 003. and

$1 000000 008..

Now, while we cannot avoid errors, we sure want to avoid significant errors,
that is we want the error to remain small relative to the plain decimal
number that specifies what we want. So. along with the plain decimal
number that specifies what we want, we must also specify a tolerance, that
is the largest plain error we can put up with (https://en.wikipedia.org/
wiki/Engineering_tolerance).

And, in the spirit of Gowers’ “measurement of a physical quantity”, we set

DEFINITION 1.1 A specification for an amount of stuff consists
of two plain decimal numbers:
» a plain decimal number to specify the amount we want,
» a plain decimal number to specify the errors we can tolerate.
which we will write

given plain decimal number + given tolerance
but which, as with Gower’s “error estimate”, we will read

given plain decimal number + plain decimal number smaller

than given tolerance

EXAMPLE 1.7. While we cannot specify an amount of 6.4 quarts of milk
(Example 1.5, page 5.), we can specify an amount of 6.4 & 0.02 quarts of milk
where £0.02 quarts of milk is the tolerance: what can be poured will then be
6.4 &+ a plain decimal number smaller than 0.02 quarts of milk.

We can then restate 77 in a more constructive manner:

significant
small relative
tolerance
specification


https://en.wikipedia.org/wiki/Engineering_tolerance
https://en.wikipedia.org/wiki/Engineering_tolerance

0

signed-number

6 Chapter 1. Numbers

NOTE 16.1 (Restated) A plain decimal number without a tolerance
can never specify an amount of stuff.

3. What about zero? As we will see again and again, 0 is a very
special number and indeed already “the ancient Greeks seemed unsure about
the status of zero as a number.” (https://en.wikipedia.org/wiki/0)

With plain decimal number other than 0, even though we cannot have
the exact amount of stuff specified by the given plain decimal number of
unit of stuff that we want, that exact amount of stuff does exist.

But 0 is special because when we specify 0 unit of some stuff, there is

no such thing as 0 unit of that stuff in the real world and all we get is the
error!

EXAMPLE 1.8. There is no such thing as a perfect vacuum. (https:
//en.wikipedia.org/wiki/Vacuum).

There is no such thing as an absolute zero temperature. (https://en.
wikipedia.org/wiki/Absolute_zero)

So,

NOTE 1.2 0 is special because:
i. 0 specifies nothing.

4 Signed Numbers

Most of the time, we need not only to describe or specify how many items
there are in a collection or how much stuff there is in an amount, but also
the way the collection of items or the amount of stuff is going.

EXAMPLE 1.9. How many people are going into a building as opposed to how
many are coming out of the building usually depends on the time of the day.
How much money is coming into or going out of our bank account usually
depends on the day of the month.

LANGUAGE 1.5 Signed whole numbers are usually called integers.


https://en.wikipedia.org/wiki/0
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Absolute_zero
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1. Size and sign. So, both signed whole numbers and signed signed whole number
decimal numbers carry two kinds of information: signed decimal number

e The size of a signed-number (whole or decimal) is the quantitative zljsntitative
information which is given by the plain-number that describes or specifies |
how many items in the collection or how much stuff in the amount. absolute value
The standard symbol for size is | | sign
qualitative
EXAMPLE 1.10. Instead of “size —3 = 3" we can write “|—3| = 3". +
positive

LANGUAGE 1.6 Absolute value is often used in textbooks instead negative
of size but we will stick with size because that's what's used in the

real world. Instead of the word “size", textbooks mostly use “absolute

value” but, sometimes, “numerical value” or “modulus” or “norm”.

None of these words will be used in this text.

e The sign of a signed-number (whole or decimal) is the qualitative in-
formation which is given by + or —, the symbols that describe or specify
which way the collection or the amount is going.

Positive numbers (whole or decimal) are the signed-numbers whose

sign is +,
Negative numbers (whole or decimal) are the signed-numbers whose
sign is —.

EXAMPLE 1.11. +17.43 Dollars specifies a real world money transac-

tion in which:

» The size of +17.43 is 17.43 which specifies how much money was
transacted,

» The sign of +17.43 is + which specifies which way the money went.

AGREEMENT 1.2 The sign + will never go without saying In this text.

EXAMPLE 1.12. We will always distinguish, for instance,

» +51.7 which is a signed number from 51.7 which is the plain number that
is the size of +51.7 . (As well as the size of —51.7

» +643 which is a signed number from 643 which is the plain number that is
the size of +643 . (As well as the size of —643 )
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opposite A positive number and a negative number with the same size are said to
signed error be opposite

EXAMPLE 1.13. Opposite+32.048 = —32.048

2. Zero has no sign. 0 is neither positive nor negative. So,

NOTE ?? (Restated) ?? because:
i. 0 specifies nothing.
ii. 0 has no sign

Nevertheless, we will want to consider 0 as a signed decimal number
because, in spite of not having a sign, 0 does come up in many computations
with signed decimal numbers.

EXAMPLE 1.14. A number and its opposite add up to 0. Conversely, if
two numbers add up to 0 then they are opposite.

3. Signed error. While scientists can never know what the plain
error in a measurement is, scientists often know if the measured plain dec-
imal number is larger or smaller than the given plain decimal number. So
scientists use signed errors whose size is the plain error and whose sign is:

+ when the measured plain decimal number is larger than the given
plain decimal number

— when the measured plain decimal number is smaller than the given
plain decimal number
However, even with signed errors,

NOTE 1.3 The tolerance is a plain decimal number because the
tolerance is the largest size of signed error we can put up with.

EXAMPLE 1.15. It makes no sense to specify —6.4 &+ a plain error smaller
than 0.02. What we can specify is —6.4 @ a signed error whose size is smaller
than 0.02 where 0.02 is the given tolerance (plain number).
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4. Numbers to go. As already mentioned in ?7. we will mostly n}lmb‘fl'
use signed decimal numbers—except of course when dealing with the size of &iven number

signed decimal numbers. So, to make our life a little easier, we will use: aCt.ual IluII}})eI'

plain number
€eIrror

AGREEMENT 1.3 Number is short for signed decimal number including gener‘f%

0. In particular: i(@;nom

» Given number is short for given signed decimal number including 0. 1

» Measured number is short for measured signed decimal number T

including O, T3

» Error is short for signed error.
And, in order to discuss the size of numbers,

» Plain number is short for plain decimal number including 0.

5. Generic given numbers. In order to make general statements,
we will use generic symbols.

EXAMPLE 1.16. In ARITHMETIC, we may check that 2+ 3 =3+ 2 and
then that 4 +7 = 74 4. Then, maybe after further experimentation or maybe
just as a wild guess, we may want to make the general statement that the order
in which we add two plain whole numbers does not change the result. To make
that statement, we would use two generic symbols for plain whole numbers,
say, a and b, and then we would state that a +b=0b+a

In other words, a generic symbol stands for something whose identity
is to remain undisclosed for the time being. In particular, a generic given
number is a given number whose “identity” remains undisclosed so that any
given number can later be substituted for the generic given number.

EXAMPLE 1.17. In Example 1.20, after we have stated that a+b = b+a,
we can state without further ado that, say, 152695 + 4082 = 4082 + 152695
just by replacing a by 152695 and b by 4 082

We will use the following:

DEFINITION 1.2 xq, 1, €2, *3, etc are symbols for generic given
numbers including 0.
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5 Computing With Given Numbers

We assume the reader knows how to perform the four operations with given
numbers but there are nevertheless a few issues worth discussing, if only for
the sake of clarity.

1. Addition and subtraction. The symbols 4+ and — are vastly

overused because not only are we using the symbols 4+ and — for both

i. addition and subtraction of plain whole numbers
and

ii. addition and subtraction of plain decimal numbers
which already are two very different sets of numbers with very different
procedures for addition and subtraction, but we are also using the symbols
+ and — to

iii. distinguish positive numbers from negative numbers
which has little to do with addition or subtraction.

So, it would really be asking for trouble for us to use, on top of all that,

the symbols 4+ and — for addition and subtraction of signed decimal numbers
and this is where we draw the line:

DEFINITION 1.3 & and &, pronounced “oplus” and “ominus”,
will be the symbols for addition and subtraction of signed decimal
numbers.

In other words, the O around the operation symbol will remind us to take
care of the signs but, as an added benefit, ® and & will also let us avoid
using lots of parentheses.?

EXAMPLE 1.18. Instead of:
—23.87 4 (—3.03), —44,29 — (+22.78), +12.04 — (—41.38)
we will write:

—23.87® —3.03, —44,29 © +22.78, +12.04 © —41.38

$Which is presumably why, say +13.73 and —78.02 used to be written as T13.73 and

~78.02 since _ has the same advantage as _
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[O)
&

2. Multiplication and division.

i. We will use reciprocal

» The operation symbol ® (instead of ®) for multiplication of signed dec-
imal numbers,

» The operation symbol — (fraction bar instead of &) for division of
signed decimal numbers.

ii. For future reference, we recall

THEOREM 1.1 Multiplication and Division of Signs

EXAMPLE 1.19.
+204+5=+10, +20-5=-10, -20+5=-10, -20-5=+10

+12 _ +12 _ -12 _ —12 _
s =t 5= 4, = =4 —5 = +4,

3. Reciprocal. The reciprocal of a number is +1. divided by that
number. (https://www.mathsisfun.com/reciprocal.html)

So:

i. Reciprocal +1. = +1. and Reciprocal —1. = —1.

ii. The reciprocal of 1 followed or preceded by Os is easy to get: read
the number you want the reciprocal of and insert/remove “th” accordingly,

iii. The reciprocal of most other numbers needs to be computed and we
may as well use a calculator.


https://www.mathsisfun.com/reciprocal.html
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ExXAMPLE 1.20.

Reciprocal - = _th = +0.001
Reciprocal _ = _ = —1000 000.

+1.00
Reciprocal [#4.00 = - = +0.25 (Hopefully by hand.)

+1.00
Reciprocal - = 089 = —1.13 (Use a calculator.)
1.00
Reciprocal [=2.374| = . —0.421 (Use a calculator.)

EXAMPLE 1.21. In ALGEBRA, to prove that:

» When we oplus a number and its opposite, the result is 0, we compute
o @ Opposite xg to show that the result is 0.

» When we oplus two numbers, the order does not matter, we compute 1 Dxo
and xo & 1 to show that the results are the same.

» When we oplus three numbers, the grouping does not matter, we compute
[x1 @ 22] ® x3 and x1 & [z & x3] to show that the results are the same.

To Q oppxg is negative

4. Computing with Zero? As far as @ and © are concerned, 0 is
not at all special since oplussing 0 and ominussing 0 do not do anything and
so, do not cause any difficulty.
On the other hand, inasmuch as

» Multiplying any number by 0 always gives 0 as a result,

» Dividing any number by 0 is impossible. (https://en.wikipedia.org/
wiki/Division_by_zero)

this is yet another way

NOTE ?? (Restated) ?7:
i. 0 specifies nothing.
ii. 0 has no sign

iii. Multiplying any number by 0 always gives 0 as a result,
iv. Dividing any number by 0 is impossible.



https://en.wikipedia.org/wiki/Division_by_zero
https://en.wikipedia.org/wiki/Division_by_zero
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6 Picturing Given Numbers Pi‘{““"
ruler
T . . . tickmark
1. Quantitative rulers. To picture given numbers, we will use origin

quantitative rulers which are essentially just what goes by the name of

number line
“ruler” in the real world.

symmetrical

side
AGREEMENT 1.4 Origin The tickmarks on a quantitative ruler must

include an origin, that is a tickmark labeled 0.

EXAMPLE 1.22. The following :
1 1 1 1 1 1 1 1 1 1
N N N, N N N N X
R, D G, I, Y, B, 2, Y, 0
@ Q «) Q [©) Q [ (7 ! Q
Y ) B W Y % Y %

is a quantitative ruler.

LANGUAGE 1.7 Number line is the name often used instead of quan-
titative ruler but in this text we will stick to quantitative ruler.

2. Graphic meanings. From the graphic viewpoint:
e The size of a given number specifies how far from 0 the given number is

on a quantitative ruler. So opposite numbers are symmetrical relative
to the origin.

EXAMPLE 1.23. The numbers —5.0 and +5.0 have the same size,
namely 5.0, so they are equally far from 0:

. 5 away from O 5 away from 0 :
- > | < >

1 1 1 & 1 1 1 1 1 1 1 1 6 1 thers
-8. 7. -6. 5. 4. 3. 2. -1. 0. +1. +2. +3. +4. +5. +6.

e The sign of a given number specifies which side of the origin the given
number is—as seen when facing 0:

AGREEMENT 1.5 Sides of the origin
» Positive numbers (4 sign) will be to the right of the origin 0,
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» Negative numbers (— sign) will be to the left of the origin 0.

EXAMPLE 1.24. On a quantitative ruler,

Since Sign —5 = — , the number —5 is left of 0.

Since Sign 43 = 4+, the number +3 is right of 0.

1 1 1 ‘ 1 1 1 1 i 1 1 ‘ 1 1 1 Meters
-8 -7. -6. =5. 4. 3. 2. 1. 0. +1. +2. #3. +4. +5. +6.
< Leftofo 4 | Right of 0 >
LEFT / RIGHT
/

7 Nearby Numbers

We already saw several instances where by itself a number does not provide
much information if at all. and neighborhood of given number

1. However, see 77, a plain decimal number unaccompanied by a tol-
erance can never specify an amount of stuff.
So now we can say that a measured signed decimal number is the given

signed decimal number & a signed error whose size is smaller than the given

tolerance .
To code a generic nearby number for the real world number xg, we will
use

DEFINITION 1.4 g D h
Given xg, xo®h is code for a generic nearby number.

but a frequent mistake is to forget that (77, ?7)
2. Neighborhood

3. Real World Numbers (Section 10, page 26) was easy because we
knew exactly where were the numbers we wanted to picture. But in the case
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of measured numbers, all we know is that the numbers we want to picture
are somewhere within the given tolerance of the real world number.

But here again qualitative rulers are not up to the task because of its
scale and, here again, we must aim a magnifier at xg to see a neighborhood
of Zo-

single points usually do not carry enough information for the purposes
of the cALCULUS. So, what we will do is to thicken the point we want to
look at, that is we will look at the point as center of a neighborhood, that
is we will look at the point together with nearby numbers that is numbers
within a given radius of the center. (http://mathworld.wolfram.com/
Neighborhood.html.)

As useful as quantitative rulers are, and they are used a lot in engi-
neering and the sciences to help picture data, that is lots of real world
numbers, they do not lend themselves to picturing neighborhoods and to
picture neighborhoods we will use qualitative ruler, that include just:

e A tickmark for the origin 0

e An arrowhead to indicate the way up. In this text, according to Agree-
ment 1.4 (Page 13), the arrowhead will always point to our right.

e Parentheses to mark the cutoffs of a generic positive range and a generic
negative range

% % < )
% % & §
% % S ®
%, 4 © &

Q @/ &> o
% %, o &

A
O, Q. X
> o Q@ 2
O(// </{(O Qé’\‘Q ’\\'\A
O/;n o Q Qo%
( negative range 0 positive range \
7

4. Since oo and 0 are diametrically opposed on a Magellan circle, it is
of course tempting to think of co and 0 as being reciprocal. Unfortunately
we can’t divide by 0 and oo is not even a number so that’s that. Yet there
has to be something to it and we will get to it later.

5. Picturing x¢g+h. For the real world number x(, the nearby num-
bers are in a neighborhood of zy with the radius of the neighborhood being
the tolerance . (See https://en.wikipedia.org/wiki/Neighbourhood_
(mathematics).)

So, in order to picture xg + h we aim a magnifier at zy to see a neigh-
borhood of zy.

v

thicken

center
neighborhood
nearby

radius

data

qualitative ruler
arrowhead
Parentheses


http://mathworld.wolfram.com/Neighborhood.html
http://mathworld.wolfram.com/Neighborhood.html
https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
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Negative Negative Positive Positive
upper lower lower upper
cutoff cutoff cutoff cutoff

Neighborhood of x

The tolerance is the radius of the neighborhood but, of course, since in
this text the tolerance will remain undisclosed, we will just:

e Draw a tickmark for the real world number,
e Draw a small stretch below the qualitative ruler around the tickmark.

Lower Upper Lower Upper
negative negative positive positive
cutoff cutoff,, cutoff cutoff
Xo 0
neighborhood of x,
EXAMPLE 1.25. Given the number —5.7, to picture the actual number
—5.7 4 h, we draw a neighborhood of —5.7
Lower Upper Lower Upper
negative negative positive positive
border 57 bordero border border
—5.7+h

In other words, given a number g, the actual number zg + h will be a
nearby number.

6. Sides of a neighborhood of xy. In order to deal separately with
each side of a neighborhood of x(, we will use
» 7 (namely zo with a little + up and to the right) which is stan-
dard code for nearby numbers right of xg, that is for nearby numbers
largerthan zp. (They are indeed to our right when we are facing x,
the center of the neighborhood.)
Another way to code nearby numbers right of xg is: xg + h with h > 0
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Ty
EXAMPLE 1.26. —13.74 " refers to nearby numbers right of —13.74 compare
such as for instance —13.88): — ‘q‘ > sign-size compare
( ) | 3‘.74 1 smaller
~13.88
LEFT / RIGHT

S

» o (namely xo with alittle — up and to the right) which is standard code
for nearby numbers left of xg, that is for nearby numbers smaller than
xo. (They are indeed to our right when we are facing z, the center of

the neighborhood.)
Another way to code nearby numbers left of xg is: zg + h with h < 0

EXAMPLE 1.27. —13.74 = refers to nearby numbers left of —13.74
such as —13.88: 2 {ﬁ >
713‘74
~13.88
LEFT/RIGHT

2

8 Comparing Given Numbers

We assume that the reader knows how to compare plain-numbers but it is
probably worthwhile reminding the reader that

NOTE 1.4 Comparing numbers without units makes no sense at all.

In the case of signed-number, though, things are more complicated be-
cause there are two very different ways to compare signed-number depending
on whether or not we take the signs into account or only the sizes.

1. Sign-size comparison. To sign-size compare signed-numbers,
that is to take both signs and sizes into account, the easiest way is to picture
the two numbers on a quantitative ruler and then, because of Agreement 1.4
(Page 13), the number to our left will be smaller than the number to our
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larger right and the number to our right will be larger than the number to our
left.

NOTE 1.5 sign-size goes without saying when we say larger and/or
smaller.

EXAMPLE 1.28. Given the numbers - and - we have

Smaller Larger

1 ol 1 1 1 1 1 Ll 1 1 1 1 1 1 1 Ny,
@ A 4 >

-8 -7. -6. 5. 4. 3. 2. -1. 0. +1. +2. +3. +4. +5. +6.

Left Right
LEFT/RIGHT

[/

so - is smaller than - and - is larger than-

The standard symbols for sign-size-comparisons of all four kinds of num-

bers are:
Sign-size-comparisons Symbols
equal to =
not equal to #*
smaller than <
smaller than or equal to <
larger than >
larger than or equal to >
EXAMPLE 1.29. In symbols, Example 1.28 becomes
Smaller Larger

Il P .l Il Il Il Il Il @ Il Il Il Il Il Il Il Ny,
@ @

-8 -7. 6. 5. 4. 3. 2. —-1. 0. +1. +2. +3. +4. +5. +6.

Left Right
LEFT/RIGHT

{/
so |21 < [0 =5 wel 25 [0 > [
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2. Size-comparison. To size-compare signed-number is to com- Slze-compare
pare them only in terms of their sizes and to ignore their signs.

EXAMPLE 1.30. On a ticket for speeding on a two-way road, only the size
of the speed is mentioned, not which way we were going.

In fact,

NOTE 1.6 In common English, “higher” and “lower” do not correspond
to the mathematical larger and smaller but to larger-in-size and smaller-
in-size.

EXAMPLE 1.31. In common English, we say that a $700 expense is higher
than a $300 expense even though —700 is smaller than —300 This is because
—700 is larger-in-size than —300.

The trouble is that “size-comparing” is almost always confused with “com-
paring sizes”. But the difference is what we are comparing in each case and
that is important.

EXAMPLE 1.32. Suppose that:

i. Jack is 41 year old

ii. Jack's daughter is 15 year old

iii. Jill is 39 years old

iv. Jill'son is 17 years old

Now:

a. If we compare Jack and Jill in terms of their own age, we get that
Jack is-older than Jill,

But since Jack’s child is-younger than Jill's child

b. If we compare Jack and Jill in terms of their child’s age, we get from b.
that
Jack has-a-younger-child than Jill
Similarly:
+2.7 is larger than —17.4
but since Size 2.7 is smaller that Size —17.4
+2.7 is smaller-in-size than —17.4
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PROCEDURE 1.1 To size-compare two signed decimal num-
bers

i. Get the plain decimal numbers that are the size of each of the two
signed decimal numbers,
ii. Compare the plain decimal numbers that are the sizes of the signed
decimal numbers,
iii. And then
» If the size of the first signed decimal number is smaller than the
size of the second signed decimal number, then the first signed
decimal number is itself smaller-in-size than the second signed
decimal number
» If the size of the first signed decimal number is larger than the
size of the second signed decimal number, then the first signed
decimal number is itself larger-in-size than the second signed
decimal number

TeEmMO 1.1 To size-compare the numbers - and -

i. We compare their sizes: since the size of - is the plain-number 7.5 and
the size of - is the plain-number 3.2 and since

7.5>3.2
we can conclude that
- is-larger-than -
or, in symbols, that
>

ii. On the basis of which we conclude that

- is-larger-in-size-than -

And the trouble in most textbooks is that the first step is the only one
that is explicited while the second step is supposed to “go without saying”,
perhaps because, unfortunately,

NOTE 1.7 There are no symbols for size-comparisons of signed-
numbers.

so that we will have to say it in so many words.
Graphically:

» The signed-number that is smaller-in-size than the other signed-number
is closer to 0 than the other signed-number

» The signed-number that is larger-in-size than the other signed-number is
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farther from 0 than the other signed-number.

EXAMPLE 1.33. Given the numbers - and - we saw in 77 that
> - is larger-in-size-than -

and therefore that

> - is smaller-in-size-than -

After picturing - and -

Farther from O Closer from 0

1 ;. 1 1 1 1 1 1 1 J‘ 1 1 1+‘ 1 1 1 )
-8.:1-7. -6. 5. 4. 3. 2. 1. 0. +1. +2. +3.. +4. +5. +6.
Larger-in-size Smaller-in-size

we see that

> - is farther from 0 than -
> - is closer to 0 than -

9 Qualitative Sizes

We can of course give any number and any tolerance we want and, indeed,
mathematicians treat all the numbers in a set of numbers in exactly the
same manner, regardless of their size.

EXAMPLE 1.34. +36.42 and —105.71 are added, subtracted, multiplied
and divided by the same rules as —41 008 333 836 092.017 and —0.000001607.

In the real world however numbers come in vastly different sizes.

EXAMPLE 1.35. The numbers that astrophysicists (https://
en.wikipedia.org/wiki/Astrophysics) use are entirely different from
the numbers that nanophysicists (https://en.wikipedia.org/wiki/
nanophysicist) use.

Well worth looking up in this regard are

farther from

» The 9 minutes 1977 classic video at the bottom of http://www.eamesoffice.

com/the-work/powers-of-ten/,
» Terence Tao, Fields Medal 2006, http://terrytao.files.wordpress.
com/2010/10/cosmic-distance-ladder.pdf


https://en.wikipedia.org/wiki/Astrophysics
https://en.wikipedia.org/wiki/Astrophysics
https://en.wikipedia.org/wiki/nanophysicist
https://en.wikipedia.org/wiki/nanophysicist
http://www.eamesoffice.com/the-work/powers-of-ten/
http://www.eamesoffice.com/the-work/powers-of-ten/
http://terrytao.files.wordpress.com/2010/10/cosmic-distance-ladder.pdf
http://terrytao.files.wordpress.com/2010/10/cosmic-distance-ladder.pdf
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1. Out of this world. The first two limitations have to do with
the fact that numbers can be incredibly large-in-size as well as incredibly
small-in-size:

» We all went through a stage as children when we would count, say, “one,
two, three, twelve, seven, fourteen, ...” but, not too long after that we
were able to count properly and then, soon after that, we discovered that
there was no end to whole: we could always count one more. But that
was only the tip of the iceberg.

EXAMPLE 1.36. Start with, say, — 73.8 and insert Os left of the decimal point
—730.8
—7300.8
—73000.8

—73 000000 000 000 000 000 000.8
This last number is probably already a lot larger-in-size-than any number
you are likely to have ever encountered but, if not, just keep inserting Os
until you get one!

Also, see https://en.wikipedia.org/wiki/Large_numbers#lLarge_numbers_
in_the_everyday_world)

» On the other hand, as children knowing only whole numbers, we thought
there was a number smaller than all others, namely 1. With decimal
numbers, though, there is no number smallest-in-size.

ExAmMPLE 1.37. Start with 4+ 0.8 and insert Os right of the decimal point
+0.08
+0.008
+0.0008

-+0.000 000 000 000 000 000 000 000 000 08

This last number is probably already a lot smaller-in-size-than any number
you are likely to have ever encountered but, if not, just keep inserting Os
until you get one!

2. Qualitative sizes. In view of the above, we have to face the fact
that, in any real world situation, most numbers will be either too large-in-
size or too small-in-size.


https://en.wikipedia.org/wiki/Large_numbers#Large_numbers_in_the_everyday_world
https://en.wikipedia.org/wiki/Large_numbers#Large_numbers_in_the_everyday_world
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EXAMPLE 1.38. In Example 1.50 (Page 27), how likely is a number with a

million Os left of the decimal point to specify anything in the real world? How
about with a billion 0Os 7 A trillion 0s?

EXAMPLE 1.39. In Example 1.37 (Page 22), how is a tolerance with a

million Os right of the decimal point likely to work in the real world? How
about with a billion 0s? A trillion 0s?

More precisely, in any real world situation, there will always be two
cutoff sizes:

» An upper cutoff size above which numbers will be too large-in-size to
be relevant to the situation,

» A lower cutoff size below which numbers will be too small-in-size to be
relevant to the situation.

NOTE 1.8 Upper and lower refer only to the size of the cutoff
numbers.

EXAMPLE 1.40. A mom and pop business could use 99999.99 and 0.01
as cutoff sizes for their acwhole system as it probably would never have to deal
with numbers such as —1058 436.39 or +0.00072.

\%p 09?9
%?‘9,9 \0'00 XQ'QQ qu,q

I
expenses ‘ incomes

Of course, the upper cutoff size and the lower cutoff size will depend on the
situation.

EXAMPLE 1.41. In contrast with the mom and pop business of Exam-

ple 1.44, the acwhole system for a multination corporation would certainly use
much larger cutoff sizes.

At least to an extent, the limitation on size of the specifying number and
the limitation on the size of the tolerance are linked.

EXAMPLE 1.42. We cannot specify a distance in light years with a toler-
ance in inches.

cutoff
upper cutoff
lower cutoff



qualitative size
real world number
large number
small number
finite

infinite
infinitesimal
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As far as we will be concerned, just knowing that, any real world situa-
tion, there always are cutoff sizes will be enough for us to use the following;:

DEFINITION 1.5 Qualitative Sizes. Given a real world situation,
» Large numbers will be numbers whose size is above the upper
cutoff size

2 2
%, %, & &
¢ L 9 9)
e e 5 &
4, %) & S
'?O N \0 Q,Q
(S) S
5 /‘0 L& L&
% %, B &
% e < ¢
| | 9 | |
small — small | e
EXAMPLE 1.43. In Example 1.33 we would have
\g A
0') \?\? x'\ﬁ’ ><°’Q
| | | |
EXAMPLE 1.44. In Example 1.50 we would have
\, S
9% QQQ
% v > N
% ) Q AN

‘0 “©
1 |
e omedwm ol medum e

LANGUAGE 1.8 Standard Words For Qualitative Sizes.

» The standard’ word for large is infinite. (https://wuw.
merriam-webster.com/dictionary/infinite.)

» The standard word for small is infinitesimal. (https://en.
wikipedia.org/wiki/Infinitesimal.

We will stick to the words large and small because using the words “infi-

nite” and “infinitesimal” informally, the way scientists do, really annoys

mathematicians—which we can't afford.


https://www.merriam-webster.com/dictionary/infinite
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https://en.wikipedia.org/wiki/Infinitesimal
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3. Zero has no qualitative size since 0 is excluded from small
numbers. (Definition 1.8 Real World Numbers, page 27.)

NOTE 1.3 (Restated) The tolerance is a plain decimal number
because:

i. 0 specifies nothing.

ii. 0 has no sign

ili. Multiplying any number by 0 always gives 0 as a result,

iv. Dividing any number by 0 is impossible.  See https://en.
wikipedia.org/wiki/Division_by_zero

v. 0 has no qualitative size .

4. Reciprocals. It is very tempting to think that the reciprocal of

a small number is a large number and, the other way round, that the
reciprocal of a large number is a small number.

But this is not necessarily the case because qualitative sizes depend on

the cutoffs which we set

EXAMPLE 1.45. Given
Y,
%, . o % . C,
large %, medium ‘9, small "o, medium 2, large

1 1 1

i. +0.009 is below the positive lower cutoff (+0.009 < +0.010 = 0.01) and is
therefore a small number,

ii. The reciprocal of +0.009 is +111.1 (Use a calculator.)

ili. +111.1 is below the positive upper cutoff and is therefore not a large

number.

But indeed, if we were to let the lower cutoffs and the upper cutoffs be
reciprocals of each other, then it would be the case that the reciprocal of
a small number would necessarily be a large number and the other way

round.

EXAMPLE 1.46. Given:
A X
/0 0 %) “
large % medium '00/ small '00/ medium 00,0 large
1 1

0

Il



https://en.wikipedia.org/wiki/Division_by_zero
https://en.wikipedia.org/wiki/Division_by_zero
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digit
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where the lower cutoffs and the upper cutoffs are reciprocal of each other,

i. +0.0009 is below the positive lower cutoff (+0.0009 < +0.0010 = 0.001)
and is therefore a small number,

ii. The reciprocal of +0.0009 is +1111.1 (Use a calculator.)

iii. +1111.1 is above the positive upper cutoff and is therefore a large number.

So, why didn’t we also say in Agreement 1.5 that the lower cutoffs and
the upper cutoffs would always have to be reciprocals of each other? Because
that is not always the case in the real world.

EXAMPLE 1.47.

e In business, one penny is probably the size of the smallest amount a business
can earn or lose but the reciprocal of 40.01 is +100.0 and even the tiniest
business will, at least occasionally, earn or lose more than the reciprocal,
$100.0

e In astronomy, a millionth of a mile would be unmanageably small but the
reciprocal, a million miles, would be quite medium.

e In biology, a thousand inches would be unmanageably large but the recip-
rocal, a thousandth of an inch, would be quite medium.

5. Generic names.
i. There is no standard symbol for generic large number and we will use

DEFINITION 1.6 L is a generic large number

ii. There is a standard symbol for generic small number namely:

DEFINITION 1.7 h is a generic small number.

10 Real World Numbers

1. Significant digits. Both whole numbers and decimal numbers are
made up of digits.

EXAMPLE 1.48. Both the whole number 516026 618 and the decimal
number 516.026 618 are made of the digits 0,1,2,5,6,8
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LANGUAGE 1.9 Figure is the name often used instead of digit but In
this text we will stick to digit.

a. However, not all the digits in a number are significant.

EXAMPLE 1.49. To say that “the estimated population of the US was
“328285992 as of January 12, 2019" (https://en.wikipedia.org/wiki/
Demography_of_the_United_States on 2019/02/06) is not reasonable be-
cause at least the rightmost digit, 2, is certainly not significant: on that day,
some people died and some babies were born so the population could just as
well been given as, say, 328 285991 or 328 285 994.

Note that further along in the Wikipedia article, the population is given more
reasonably: “from about 76 million in 1900 to 281 million in 2000

But as always, what is significant depends on the situation.

EXAMPLE 1.50. The numbers given in https://en.wikipedia.org/
wiki/Iron_and_steel_industry_in_the_United_States are much more
reasonable: ‘'In 2014, the United States |[...] produced’ 29 million metric tons
of pig iron and 88 million tons of steel.” Similarly, "Employment as of 2014
was 149,000 people employed in iron and steel mills, and 69,000 in foundries.
The value of iron and steel produced in 2014 was 113 billion.”

Identifying significant digits, however, is not quite a simple matter (https:
//en.wikipedia.org/wiki/Significant_figures#Identifying significant_
figures) and neither is determining in the result of a computation which
digits will be significant (https://en.wikipedia.org/wiki/Significant_
figures#Arithmetic).

b. The third limitation has to do with the fact that, just like small
numbers, any number can have incredibly many decimal digits and of course
only so many of these digits will be significant.

EXAMPLE 1.51. What could $312.374333840 possibly correspond to in
the real world?

DEFINITION 1.8 Real World Numbers. Given a real world sit-
uation, real world numbers will be numbers:
» whose size is between the upper and lower cutoff sizes,


https://en.wikipedia.org/wiki/Demography_of_the_United_States
https://en.wikipedia.org/wiki/Demography_of_the_United_States
https://en.wikipedia.org/wiki/Iron_and_steel_industry_in_the_United_States
https://en.wikipedia.org/wiki/Iron_and_steel_industry_in_the_United_States
https://en.wikipedia.org/wiki/Significant_figures#Identifying_significant_figures
https://en.wikipedia.org/wiki/Significant_figures#Identifying_significant_figures
https://en.wikipedia.org/wiki/Significant_figures#Identifying_significant_figures
https://en.wikipedia.org/wiki/Significant_figures#Arithmetic
https://en.wikipedia.org/wiki/Significant_figures#Arithmetic
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finite
infinite and
infinitesimal » whose digits are all significant

Magellan circle

LANGUAGE 1.10 Standard Words For Qualitative Sizes.
» The standard word for real world number is finite. (https://en.
wikipedia.org/wiki/Finite_number.)

11 Picturing small numbers
12 Picturing large numbers

13 Infinity

Rulers are “anthropocentric” inasmuch as we tend to think of ourselves as
being “somewhere on the ruler”. And, indeed, the idea that the earth is flat
goes only so far and, similarly, so does the idea of picturing numbers with
straight rulers.

1. The earth is round. If, starting from the origin, we go straight
ahead on a ruler, in either direction, farther and farther, we have the feeling
that the longer we go, the farther away from the origin we will get and that
there is nothing that can keep us from getting as far away as we want from
the origin.

Magellan
circle

But this is not the case in the real world: even
though Magellan died in 1521 while trying to go
as far away from Seville as he could, his ships kept
on going west and one of them eventually reached
...home, bearing witness that there was no going
around the fact that the earth is round. (https:

//en.wikipedia.org/wiki/Ferdinand_Magellan)

Thus, in the real world, what looks to us like a straight line is in fact just a
piece of a Magellan circle.


https://en.wikipedia.org/wiki/Finite_number
https://en.wikipedia.org/wiki/Finite_number
https://en.wikipedia.org/wiki/Ferdinand_Magellan
https://en.wikipedia.org/wiki/Ferdinand_Magellan
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infinity
00

2. Do?vn un(.:ler. On a Magellan circle., iy cowet  Magellan view
the point diametrically opposed to the ori- / / 2

gin is the point farthest away from the origin. cicey ¥*
This point is called infinity and the symbol for &

infinity is oo.

3. Magellan view. When we use a Magellan circle instead of a ruler,
which is what we will call the Magellan view, the view is not “anthropocen-
tric” anymore because now oo is in the middle of non-real world numbers
the way 0 is in the middle of the real world numbers:

Magellan
circle

A
S

4. oo is not a number. Indeed, we will have to be careful and keep
in mind that, while we can always compute with x¢ and part of the time
with 0,

NOTE 1.9 oo is not a number and we can never compute with co the
way we compute with zg or even 0.

However:
» —00 < Iy
> +00 > X
» 2o ©+ 00 =400
» LoD —00=—00
>



point
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5. Points. Nevertheless, as we will see, it will be extremely conve-
nient to use the word point to stand for “zg, 0, or co”. But we won’t use
a synbol for points because computing with such a symbol would be much
too dangerous as we can always compute with zy (Definition 1.2, page 9.),
only sometimes with 0 (??, ??.) and never with co (77, 77.).

which, in a Magellan view, would look something like

80 000.00

—-15000.00

which, in a Magellan view, would look like something like

+1 000 000

+80 000.00

14 Picturing Small Numbers
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1. Qualitative rulers give the wrong impression by making it look like magnifier
there are a lot more large numbers than there are small numbers:

77 %

() < & &
& s, xO Q
K (9%@ & «C’\{\
%+ 2 %)
& 9, S
00@ [%)f \O \)QQ
> . 2 X
. < . B .. N ..
Negative O Negative % ,° Positive 2 Positive
large numbers ( medium numbers)(l)(medium numbers) large numbers

Small numbers

But since where the cutoffs are depends on what the real world numbers
are, and therefore on what the particular situation being dealt with is, it is
not possible to make a general argument as to why indeed this impression
might be wrong.

On the other hand, the two upper cutoffs, and therefore large numbers,
are usually beyond —1.0 and +1.0 so that their reciprocals are between —1.0
and +1.0 and therefore have a good chance of falling between the negative
lower cutoff and the positive lower cutoff and therefore to be small. So,
it is fairly likely that each large number is matched with a small number,
namely its reciprocal.

Which means, though, that small numbers must be packed more tightly
than large numbers.

EXAMPLE 1.52. While +7000 and +8000 differ by +1 000, their recip-
rocals, which are +0.000 143 and +0.000 125 differ only by —0.000 018

2. Since small numbers are packed so tightly, to picture small num-
bers we aim a magnifier at 0 to see a neighborhood of 0:
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scale 5
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4, %, I ¢
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® ® N © N
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% % $ @
@ & [QO N
< &
_( Negative medium numbers Positive medium numbers )

Neighborhood of 0

The radius of the neighborhood is the tolerance but since in this text
the tolerance will remain undisclosed so will the radius of the neighborhood
and we will just:

e Draw a tickmark for 0,
e Draw a small stretch below the qualitative ruler around the tickmark.

Since the scale of the neighborhood is larger than the scale of the ruler
(https://en.wikipedia.org/wiki/Scale_(map)#Large_scale, medium_
scale, _small_scale), though, drawing the neighborhood on top of the
ruler, as is often done, can be misleading and, for the picture to be perfectly
clear, we will draw the neighborhood of 0 just under the qualitative ruler:

% % 4
oig@,}‘ §9$f. B )@g&
% ’LQ g >
Osﬁ 3 = @\O Q)\)Q
K2 G = &
K2 A o S
( Negative mediumnumbers i Positive medium numbers )
Neighborhood of 0
EXAMPLE 1.53. With a given radius of 0.4 the neighborhood of 0 would

extend from —0.4 to +0.4:


https://en.wikipedia.org/wiki/Scale_(map)#Large_scale,_medium_scale,_small_scale
https://en.wikipedia.org/wiki/Scale_(map)#Large_scale,_medium_scale,_small_scale
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ot
right of
z 0
Q
% T 2 & lgft of
09/' 9@ . E xO xO
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¢ < Q
Vo) 9, ~
0@, L”@,.O S ?J\o\$ OQQQ
“%,, %o & s
7 S
Negative medium numbers (I) ° Positive medium numbers §
¢ 0.4 ) I( 0.4
Neighborhood of 0
So, a

DEFINITION 1.9 Neighborhood of 0 consists of the small num-
bers.

3. Sides of a neighborhood of 0. In order to deal separately with
each side of a neighborhood of 0, we will use

» 07 (namely 0 with a little + up and to the right) which is standard
code for nearby numbers right of 0, that is for positive small numbers.
(They are indeed to our right when we are facing 0, the center of the
neighborhood.) .

» 0~ (namely 0 with a little — up and to the right) which is standard
code for nearby numbers left of 0, that is for negative small numbers.
(They are indeed to our left when we are facing 0, the center of the
neighborhood.) .

EXAMPLE 1.54. 0t refers to nearby numbers right of 0 (such as for

instance +0.37) and 0~ refers to nearby numbers left of O (such as for
instance —0.88):
0* 0+

/

~0.88 J +o 37
LEFT // RIGHT

Sy
>

So, never forget that



neighborhood of oo
neighborhood
center

Mercator view
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NOTE 1.10 A small T or —, alone and up to the right, is not an
“exponent”.

15 Picturing Large Numbers

1. In the Magellan view, we see that the two stretches beyond the
ranges make up in fact a single stretch of the Magellan circle whose center

1S OO:
Magellan
circle Infinity Infinity
......... il 7
“““ 7 e, Magellan X
* circle y
g,
o/ 1
Origin
Negative Positive f
upper upper
cutoff cutoff
So,

DEFINITION 1.10 A neighborhood of co is the part of the Mag-
ellan circle that is beyond the upper cutoffs and whose center is oco.

In other words, large numbers are near co and to thicken co will mean
to look instead at oo together with large numbers.

2. But in the Mercator view (https://en.wikipedia.org/wiki/
Mercator_projection), which is when we look just at the qualitative ruler,
we will say that a neighborhood of co is the part of the qualitative ruler that
is left of the negative upper cutoff and right of the positive upper cutoff.

Negative Positive
upper upper
Neighborhood of o cutoff cutoff Neighborhood of o

wo

In other words:

DEFINITION 1.9 (Restated) Neighborhood of 0 consists of
the large numbers.



https://en.wikipedia.org/wiki/Mercator_projection
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3. Nearness. Instead of saying that a number is in a neighborhood
of something, it is standard to say that the number is near that something.
We then have a couple more ways to think of large:

DEFINITION 1.7 (Restated) h
» Large numbers are the numbers that are in a neighborhood of co.
» Large numbers are the numbers that are near co.

4. Sides of a neighborhood of co. In order to refer separately to
each side of a neighborhood of oo, we need to imagine that we are facing
the center of the neighborhood in the Magellan view, that is that we are

“facing co”:
&,

,
oo priosd
- THag 00%3
\arge negative lar. ol

II“'""""""'r"""'llé:.e,{)OSI.[jI/
4 Tag,, "C

\““

LEFT
/ RIGHT

Facing 0

r’ ?‘.
We will then say that:

e Numbers right of co refers to large negative numbers because if we

could be facing oo large negative numbers would then be
We will use —large as code for numbers right of co.

EXAMPLE 1.55. 724873 336. is -:

,’
—la}{ge\A THalg OO/oo pniosd

ITLCLLLLLLLLLLELLL LTI e
- "y
e

wunt
st
o

-

near
side

right of oo
-large



left of oo
+large
—00

+00
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e Numbers left of oo refers to large positive numbers because if we could
be facing oo large positive numbers would then be _ We will
use +large as code for numbers left of oc.

EXAMPLE 1.56. +724 873 336. is [left of 00

&% prios

““‘I||lllllllllllllll!(yi“.).;l;?'a'_l
ot o .

+large

@ Facing 0
’,

5. Sides of oo in Mercator view. But we will also use the Mercator
view and while it is fairly easy to remember which side is left of oo and which
side is right of co in the Magellan view, it;s easy to forget in the Mercator
view.

So, we will also use the sign of the large numbers to refer to the sides
of co and we will label the extremities of qualitative rulers with —oo and
+oo for which, however, there are no tickmarks because they do not label
numbers but only “the end of the line”.

» Magellan view:

. —00 0 +00
» Mercator view: ¢ : y
(E)wer Upper
bound bound

But keep in mind that the
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NOTE 1.11 Sign in front of oo cannot be “the sign of oo" because
(?7) in the first place. (Again, the sign in front of co designates a side
of 00.)

16 Computing With Qualitative Sizes

For computational purposes, qualitative sizes make up a rather crude system

because:

» medium carries no information about where the lower cutoffs and the
upper cutoffs are,

» large carries no information about where the upper cutoffs are, that is
“how large” large is

» small carries no information about where the lower cutoffs are, that is
“how small” small is

On the other hand, as we will see, qualitative sizes will carry plenty enough

information for our investigations in this text.

1. A good rule of thumb for experimenting with numbers of quali-

tative sizes will be
» medium: try £1,
» large: try £10.0 or +100.0 or £1000.0 etc
» small: try £0.1 or £0.01 or +0.001 etc
And of course, if a number is:
e [arge, then all numbers that are larger-in-size will themselves be large,
e small, then all numbers that are smaller-in-size will themselves be small.

We will now see to what extent we can compute with large, small and
medium,.

2. Addition and subtraction. large — large is undetermined
because the result could be large, small or medium depending on “how
large” each one of the two large is.

4Moreover, qualitative sizes lead quite naturally to Bachmann-Landau’s o’s and O’s
(See https://en.wikipedia.org/wiki/Big_O_notation ) and in turn to asymptotic ex-
pansions (See https://en.wikipedia.org/wiki/Asymptotic_expansion) which is what
physicists, chemists, biologists, and engineers use all the time.

undetermined


https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Asymptotic_expansion
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EXAMPLE 1.57. Here are two instances of large — large that are differ-
ent in qualitative sizes:

+1 000 000000 000.7 — +1000000000.4 = 4999 000000 000.3 ,

but

-+1000000000000.5 — +1000000000000.2 = +0.3 .

3. Reciprocals and we have:

THEOREM 1.2 Reciprocal of qualitative sizes

» The reciprocal of tlarge is £small: ﬁf;e = £small,
» The reciprocal of £medium is medium: % = tmedium,

» The reciprocal of £small is large: :I:;’ln.gll = +large.

Keeping in mind that generic codes always include the sign, we have

THEOREM 1.2 (Restated) Reciprocal of qualitative sizes

1.
Reciprocal of h = +T0 =1L
1.
Reciprocal of L = %0 =h
1.
Reciprocal of g = sl =10
Zo

The fact that numbers that are near oo are far from 0 and therefore the
change of viewpoint from 0 to co makes it of course tempting to say that
0 and oo are reciprocal of each other and the more so that, on a Magellan
circle, 0 and oo are diametrically opposed to each other. However,

» Since a neighborhood of oo looks a lot bigger than a neighborhood of 0
the situation is not really that symmetrical.

» Since we cannot divide any number by 0 (See 7?7, ?77), we certainly cannot
divide +1.0 by 0 and so 0 has no reciprocal.

» Since oo is not a number to begin with (See 7?7, ??) oo has no reciprocal.

The last two, though, is where thickening with nearby numbers comes to

the rescue:

» We can thicken 0 with small numbers

» We can thicken oo with large numbers

and then, using Theorem 1.2 (Page 38.) we get:
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THEOREM 1.2 (Restated) Reciprocal of qualitative sizes
e The reciprocal of being near oo is being near 0,
e The reciprocal of being near 0 is being near oo,

e The reciprocal of being near a medium number is being near a
medium number.

4. Multiplication. While multiplying by 0 always gives 0—see 77
(??), and while we cannot multiply by oo at all—See 7?7 (?7), we can often
multiply by small and by large:

THEOREM 1.3 Multiplication of qualitative sizes

large medium small

large large large ?
medium | large medium small
small ? small  small

i. The non-highlighted entries are pretty much as we would expect.
EXAMPLE 1.58. 10000 - 1000 = 10000000 and 0.01 - 0.001 = 0.00001
ii. The two highlighted entries, that is large - small and small - large ,

are undetermined because the result could be any of large, small or medium
depending on how small is small compared to how large large is.

EXAMPLE 1.59. Here are three instances of large - small that are dif-
ferent in qualitative sizes:
1000 - 0.1 = 100, 1000 - 0.001 = 1, 1000 - 0.00001 = 0.01

5. Division. While we cannot divide by 0—see 7?7 (??), we can often
divide by small and more generally we have::

THEOREM 1.4 Division of qualitative sizes

= large  medium small

large ? large large

medium | small medium large
small | small  small ?
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real number i. The non-highlighted entries follow from Theorem 1.3 and the fact that
Reciprocal of large = 1+ large = small and Reciprocal of small = 1+ small
= large (Theorem 1.2).

EXAMPLE 1.60. 1 000+-0.01 = 1000- Reciprocal 0.01 = 1000-100 = 100000

ii. The two highlighted entries, namely large = large and small ~ small ,
are undetermined because the result could be any one of large, small or
medium depending on how large each one of the two large is and how small
each one of the two small are.

EXAMPLE 1.61. Here are three instances of large + large that are
different in qualitative size:
1000 =10 = 100, 10001000 =1, 100 -1000 = 0.1
EXAMPLE 1.62. Here are three instances of small +~ small that are
different in qualitative size:
0.001+-0.1 = 0.01, 0.001+-0.001 =1, 0.01+0.001 = 10

17 Real Numbers

As opposed to Numbers, most textbooks use so-called real numbers which
are an entirely different kind of numbers. This text will not really use real
numbers and the purpose of this section is only to give the reader an idea
of what the difficulties with really using real numbers would be and thus
to explain why we will mostly use signed decimal numbers and how we will
occasionally use real numbers.

1. What are real numbers anyway? Even though most college
mathematics textbooks claim to use real numbers the closest they ever come
to explaining what real numbers are is something along the lines of “a real
number is a value of a continuous quantity that can represent a distance
along a line.” (https://en.wikipedia.org/wiki/Real_number.) Which,
one has to admit, isn’t particularly enlightening. °

But there is a very good reason for that: in contrast with signed decimal
numbers, real numbers are extremely complicated to pin down.

5Moreover, this “definition” keeps changing with time! A sign of unease?


https://en.wikipedia.org/wiki/Real_number
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EXAMPLE 1.63. “The real number system (R;+;-;<) can be de-
fined axiomatically [...] There are also many ways to construct "the"
real number system, for example, starting from natural numbers, (https:
//en.wikipedia.org/wiki/Natural_number) then defining rational num-
bers algebraically (https://en.wikipedia.org/wiki/Rational_number),
and finally defining real numbers as equivalence classes of their Cauchy se-
quences or as Dedekind cuts, which are certain subsets of rational numbers."
(https://en.wikipedia.org/wiki/Real _number#Definition)

Which, unless you are a mathematician, is not exactly enlightening either.
Moreover, the above “construction” is, in fact, quite incomplete as one really
should: i. go the Dedekind cuts route and also extend the metric and show that
the quotient is metric-complete, and ii. go the Cauchy sequence route and also
extend the order and show that the quotient is order-complete, and iii. show
that the two quotients are both metric-isomorphic and order-isomorphic.

In any case, a very tall order.

2. Fractions and roots In fact, at best, that is when the given real
number is a fraction or a root, a given real number is only like a Birth
Certificate in that the given real number is just a name that says where the
real number is coming from. But, by itself, certainly gives no indication of
what its size is.

EXAMPLE 1.64.
e The fraction 4168

is just a name for the solution of the equation 703 x =

4168 (Assuming there is a solution!)

e The root ¥ —17.3 s just a name for the solution of the equation z#'= —17.3.
(Assuming there is a solution!)

However, this best case is actually extremely rare and most given real
numbers do not tell us by themselves where they are coming from which
leaves us with no way to get even a rough idea of what the size of that given
real number might be. You just have to find out from somewhere.

EXAMPLE 1.65.

e 7 is just a name that does not say by itself that 7 is “the ratio of a circle’s
circumference to its diameter”. (https://en.wikipedia.org/wiki/Pi)

e ¢ is just a name that does not say by itself that e is “a mathematical

fraction
root

In textbooks it’s of course the
other way around,


https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Real_number#Definition
https://en.wikipedia.org/wiki/Pi
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approximate ) ] ] ) ]
constant which appears in many different settings throughout mathematics".

(https://en.wikipedia.org/wiki/E_(mathematical_constant))

3. Computing with real numbers can be done directly from the
code only with the same two kinds of real numbers, that is when the real
numbers are fractions or roots:

i. When the real numbers are fractions, there are rules to compare,
add, subtract, multiply and divide directly with the codes. (https://en.
wikipedia.org/wiki/Rational_number#Arithmetic)

EXAMPLE 1.66. To know which is the larger of % and %617 we can use

a rule that involves computing the “common denominator”.

ii. When the real numbers are roots , there are rules to multiply and
divide directly with the codes but not to add or subtract. (https://en.
wikipedia.org/wiki/Nth_root#Identities_and_properties)

iii. However, it is usually not possible to compute with both kinds of
real numbers at the same time.

EXAMPLE 1.67. Add e and 7 or figure out which of the two is larger.

(Hint: you can't do either from the code.)

And, even when the real numbers are fractions and roots, things can still be
difficult.

EXAMPLE 1.68. Add /64 and % or figure out which of the two is larger.
(Hint: you can do both but not with the only slightly different /65 and %)

iv. Of course, the examples in textbools use mostly fractions and/or
roots even though it is at the cost of being immensely misleading if only
because most real numbers are neither fractions nor roots. ©

18 Decimal Approximations

The way engineers and physicists, chemists, biologists, compute with real
numbers is by approximating the real numbers with signed decimal num-

6Tt is also at the expense of a unified view and therefore of forcing memorization of
scattered recipes.
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bers.

1. To begin with, one way or the other, all real numbers, including
fractions and roots, come with a procedure for computing approximations
by signed decimal numbers. Of course, the more “exotic” the real number
is, the more complicated the procedure for approximating is.

EXAMPLE 1.69.
e To approximate

4168 - . .
5 o We use the division procedure to divide 703 into

4168 . Few divisions, though, end of themselves. But when a division does
not, the more we push the division, the better the approximation.

e To approximate \3/17.3, we essentially proceed by trials and errors:

2.0%= 8.0, 3.08= 27.0, so, since 17.3 is between 8.0 and 27.0, ¥/17.3 must
be somewhere between 2.0 and 3.0. (But how do we know that it must?)

2.7% = 19.683 so, since 17.3 is less than 19.183, \3/17.3 must be less than
2.7, etc. (But how do we know that it must?)
Of course, the actual procedure is systematic but that's the idea.

e There are many ways to approximate w. Perhaps the simplest one is the
Gregory-Leibniz series whose first few terms are:
fga gt b
However, even with “500,000 terms, it produces only five correct deci-
mal digits of 7" (https://en.wikipedia.org/wiki/Pi#Approximate_
value)

e One of the very many ways to approximate e is:
L+ 1+ 15+ 123 + 1253
(https://en.wikipedia.org/wiki/E_(mathematical_constant)
#Asymptotics)

2. Since a given real number is usually not equal to the signed decimal
number that we will use to approximates it, in order to write equalities we
will have to use:

DEFINITION 1.11 [...] will be code for “some small number, posi-
tive or negative, whose size is too small to matter here”.

In other words, [...] is a signed number about which the only thing we know
is that the size of [...] is less than the largest permissible error whichi is
the equivalent here of a tolerance.

pI‘()C()le‘O

]

largest permissible error


https://en.wikipedia.org/wiki/Pi#Approximate_value
https://en.wikipedia.org/wiki/Pi#Approximate_value
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Asymptotics
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Asymptotics
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EXAMPLE 1.70.

o U8 —5929+][..] where [...] is less than 0.001 which is the largest permis-
sible error. (Else the procedure would have generated 5.928 or 5.930 instead
of 5.929.)

o V173 = 2.586318666944673 + [..] where [..] is less than
0.000 000 000 000 001 which is the largest permissible error. (Else the proce-
dure would have generated 2.586 318 666 944 672 or 2.586 318 666 944 674
instead of 2.586 318 666 944 673.)

o m = 3.1415 + [...] where [...] is less than 0.00001 which is the largest
permissible error. (Else the procedure would have generated 3.1414 or
3.1416 instead of 3.1415.)

e ¢ =2.71828182+]...] where [...] is less than 0.000 000 01 which is the largest
permissible error. (Else the procedure would have generated 2.718 281 81 or
2.718281 83 instead of 2.718 281 82.)

3. So we have come full circle back to signed decimal numbers and
the question then is why should people who want to learn CALCULUS have
to use real numbers that they will then have to approrimate with signed
decimal numbers rather than use signed decimal numbers directly from the
start?

FEngineers, physicists, chemists, biologists, etc all use signed decimal
numbers. After all, and to quote Gowers again, “physical measurements
are not real numbers. That is, a measurement of a physical quantity will not
be an exactly accurate infinite decimal. Rather, it will usually be given in the
form of a finite decimal together with some error estimate: x = 3.14 + 0.02
or something like that.” 7

And, certainly not least, “most calculators do not operate on real num-
bers. Instead, they work with finite-precision approximations.” See “In com-
putation” at https://gowthamweb.wordpress.com/2016/05/01/real-numbers/

The answer to the above question then is: no reason at all. As engineers
are fond of saying, the real real numbers are the decimal numbers.

Except possibly if you want to become a mathematician. And even then,
having worked with signed decimal numbers can help you learn about real
numbers. (See Gowers’ https://www.dpmms.cam.ac.uk/~wtgl10/decimals.
html)

So, in this text, like for engineers, scientists, and calculators, number

"https://www.dpmms . cam.ac.uk/~wtgl0/continuity.html


https://gowthamweb.wordpress.com/2016/05/01/real-numbers/
https://www.dpmms.cam.ac.uk/~wtg10/decimals.html
https://www.dpmms.cam.ac.uk/~wtg10/decimals.html
https://www.dpmms.cam.ac.uk/~wtg10/continuity.html
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(Agreement 1.3, page 9).
We are now, finally, ready to start on the CALCULUS!

45
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In 77 77 of the Introduction of 77 Numbers on 77
In section 3 Plain Decimal Numbers on page 3

In subsection 3.1 Units on page 3

3
3.1
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Dans zg + h, |h| < 1 pour que |h| > |h?| > |B3|...

Quand zg n’est pas trop grand, cela correspond a quelque chose de réel.
Par exemple, si xp est un nombre que l'on veut réaliser, h est 'erreur que
I’on commettra et xg + h sera ce qu’on obtiendra.

Mais je ne vois pas a quoi de réel h correspond quand zq est grand.

EXAMPLE 1.71.

Lorsque xg est, disons 73 un h de 0.1 correspond, par exemple, a une incertitude
de mesure.

Lorsque xg est, disons 73 000 000, a quoi correspond un h de 0.17

Bien siir, avec des unitées, on peut remplacer 73000000 metres par 73
mégametres et le h devient 0.1 mégametres. Mais je ne crois pas que ca
réponde vraiment a la question.
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Functions of various kinds are
"the central objects of
investigation" in most fields of

. relation
modern mathematics. i

Michael Spivak!

Chapter 2

Functions

Relations, 49 e Functions, 51 e Picturing Input-Output Pairs, 55

e Functions Specified By A Global Graph, 59 e Functions Specified By
A Global I-O Rule, 62 e Declaring Inputs, 64 e Returned Outputs, 66
e Onscreen Graph, 69 e Functioning With Infinity, 69 e Computing
Input-Output Pairs, 69 e Fundamental Problem, 71 e Joining Plot Points,
72

As we will see, the CALCULUS is about calculating with “functions” which
are entities that “are widely used in science, and in most fields of mathe-
matics.” (https://en.wikipedia.org/wiki/Function_(mathematics).)

1 Relations

That a “single point usually does not carry enough information” (7?7 ?7?,
??.) is in fact an instance of a general principle, namely that there isn’t a
thing in the real world that stands alone, all by itself: every single thing in
the real world is related to many other things.

EXAMPLE 2.1.

e Everything sits on something: people sit on chairs that sit on floors that sit
on joists that sit on walls that sit on ...

e Human beings can only live in a society.

9Calculus, 4th edition

49
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1. In fact, a thing is known only by the things that are related to it.
The thing we want to know about will be the output and the thing that

will give us the information about the output is the input .

EXAMPLE 2.2. The following are variants found in many cultures of the
same thought:

You tell me: (input) then I'll tell you: (output)

The company you keep what you are (Dutch)
Who's your friend who you are (Russian)
What you are eager to buy what you are (Mexican)
With whom you go what you do (English)
Who your father is who you are (Philippine)
What you eat what you are (French)

(https://answers.yahoo.com/question/index?qid=
20090403194549AAYZSEr)

2. More precisely, a relation is specified by whatever process, device,
procedure, agency, converter, exchanger, translator, etc, that pairs each
input to the related output(s). See https://en.wikipedia.org/wiki/
Binary_relation

For instance, in disciplines like psychology, sociology, business, account-
ing, etc but also in the experimental part of physics, chemistry, biology,
engineering, etc relations are often specified by tables.

EXAMPLE 2.3. The table

People: (input)  Thing(s) people like to do: (output(s))

Andy walking playingi music
Beth
Cathy reading walking learning calculus

specifies a relation in which Andy is paired (among others) to playing music,
Beth is paired to nothing, and Cathy is paired (among others) to

learning calculus.


https://answers.yahoo.com/question/index?qid=20090403194549AAYzSEr
https://answers.yahoo.com/question/index?qid=20090403194549AAYzSEr
https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/Binary_relation
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3. Given a relation, there will be

DEFINITION 2.1 Two kinds of problems :

e Direct problems where an input is given and we have to find all
the outputs that the given input is paired to.

e Reverse problems where an output is given and we have to find
all the inputs that are paired to the given output.

EXAMPLE 2.4. Given the relation in Example 2.3 (Page 50)

» A direct problem might be: What are all the things /Andy likes doing?
Answer: walking , playing music

» A reverse problem might be: What are all the ' people who like walking ?
Answer: |Andy , Cathy

2 Functions

To see if something is changing qualitatively we must look at it in relation
to something else.

EXAMPLE 2.5. The only way to realize we are moving when we are in
an airplane is to look out the window. Which is why, similarly, it took a long
time for people to realize the earth is moving around the sun. Which is why to
realize the entire galaxy we are in is moving is even harder.

This is even more the case for quantitative information.

EXAMPLE 2.6.  We might say that someone’s income tax was $2 270 but,
by itself, that would not really be much information.

For instance, $2270 was a lot less money in, for instance, Year2013 than it
was a century earlier, in | Year 1913 —the year income tax was first established.
Similarly, $2270 would not be much money for a billionaire but would be a lot
of money for a working stiff.

So, for saying that someone’s income tax is $2270 to be real information,
there would have to be some table pairing Years or Incomes with Income Tax.

call for



function
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1. However, the fact that there is nothing to prevent a relation from
pairing one input to many outputs can make seeing changes quite difficult.

EXAMPLE 2.7. That a slot machine can pair a [number of coins with just
about any number of coins makes the gambler’s life quite hard.

That a parking meter pairs a [number of coins with only one parking time
makes life a lot easier.

2. So we will restrict ourselves to functions, that is relations that
satisfy the

DEFINITION 2.2 Functional requirement
No [input can be paired to more than one output .
or, to put it as mathematicians would,

An input can be paired to at most one output .

EXAMPLE 2.8. In Example 2.7 (Page 52)

The slot machine does not satisfy the functional requirement because even
when two persons input the same amount of money the slot machine can
output different amounts of money.

The parking meter does satisfy the functional requirement because whenever
two persons input the same amount of money the parking meter will always
output the same amount of parking time.

EXAMPLE 2.9. The relation specified by the table

People (Input)  Things people like to do (Output)

Dave skating
Eddy driving
Fran singing

satisfies the functional requirement
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return
EXAMPLE 2.10. The relation specified by income tax tables is a function. j1ain

3. According to definition 2.2, given an input, a function may return
one output but

NOTE 2.1 A function may return no output.

EXAMPLE 2.11. The relation specified by the table

People (Input) Things people like to do (Output)

Guy
Hazel skiing
Izzy

satisfies the functional requirement.

EXAMPLE 2.12. The relation specified by income tax tables is a function
even though incomes below the minimum owe no income tax. (On the other
hand, one might argue that the tax they owe is $0.00 so this is perhaps not
really quite a good example.)

4. On the other hand, it is quite possible for a function to pair many
inputs to one same output . In other words, the very same output may be
returned by a function for many inputs.

EXAMPLE 2.13. A business may be looked upon as the function specified
by the input-output table of its profits/losses over the years:

2 Actually, functions should not be allowed to return no output because that causes
a theoretical difficulty and one should introduce the notion of domain. But since this
theoretical difficulty is not about to come up any time soon, here we need not complicate
things unnecessarily.
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Fiscal Year Profit/Loss

1998 +5000
1999 —2000
2000

2001 +5 000
2002 —2000
2003 —1000
2004

2005 -+5000

In 1998, 2001, and 2005 the business returned the same profit/loss namely
+5000

AGREEMENT 2.1 “at” versus “for” We will often say “the output at
the given input” as a shorthand for “the output returned by the function
for the given input”. .

5. In the case of a function, the two kinds of problems (Definition 2.1,
page 51) become

DEFINITION 2.1 (Restated) Two kinds of problems:

e Direct problems where an input is given and we have to find
the single output (if any) that the function returns for the given
input,

e Reverse problems where an output is given and we have to find
all the (possibly several) inputs for which the function will return
the given output.

EXAMPLE 2.14. Given the business in Example 2.13 (Page 53),

» A direct problem might be: What was the profit/loss in 1999 ?
Answer: —2000

» A reverse problem might be: In what year(s) (if any) did the business return
+50007
Answer: 1998, 2001, 2005 .
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We will see that direct problems are usually easy to solve but, as might be
expected, it is solving reverse problems, which is what solving “equations”
is all about, that matters most in the real world.

EXAMPLE 2.15. Solving the direct problem of how much parking time
three quarters will buy you is easy: just put | three quarters in the parking

meter and see how much parking time you get!
But in the real world, what we need to solve is the reverse problem of, when

we want, say, two hours parking time, figuring = how many quarters we need
to put in the parking meter.

6. Given a function, an [input - output pair is an input together
with the (there can be at most one) output that the function returns for
the input. It is standard to write input-output pairs within parentheses

with a comma to separate the input from the output: (finput, output ).

EXAMPLE 2.16. Given the business in Example 2.13 (Page 53),

» (11998, +5000) and (2002, —2000) are input-output pairs,

» (1999, +3000) is not an input-output pair because the table does not pair
1999 with +3 000,

» There is no input-output pair involving 2000

» There is no input-output pair involving +3 000

3 Picturing Input-Output Pairs

Given a function, we will often want to picture input-output pairs.

1. A simple-minded way to picture an input-output pair would be to:
e Tickmark the input on a quantitative input ruler as in section 10,
(Page 26),
e Tickmark the output on a quantitative output ruler as in section 10,
(Page 26),
e Draw an input-output link from the input on the input ruler to the
output on the output ruler.

input-output
pair

input ruler
output ruler
link
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plot
Cartesian setup EXAMPLE 2.17. The input-output pair (| Year 2003 , $-1000 ) in Exam-
screen ple 2.13 (Page 53) could thus be pictured as follows:
L L L L L L L Weéars (/nput Ruler)
o 9. < SO, <O 0, <
RO Y @ @ ‘ %, "%,
(_—‘ Input-output link]___
1 1 .0 L L = = = Dollars (Output Ruler)
RS 2 7 < S5 b4 Sy
o) ) o) @) @) @) @)
> @ > P QD > 9

Obviously, though, picturing input-output pairs that way is not going to
work very well with more than a very few input-output pairs.

2. So, in order to plot input-output pairs, we will use:

A. A quantitative Cartesian setup, that is:

e A rectangular area which we will call screen.
e A quantitative input ruler placed horizontally below the screen
e A quantitative output ruler placed vertically left of the screen

EXAMPLE 2.18.

Screen

Input
7 6 5-4 3 -2 -1 0 +1 +2 +3 +4 +5+6 +7 ryler

B. The following
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PROCEDURE 2.1 To get the plot point for an input-output
pair

i. Tickmark the input on the input ruler,
ii. Draw an input level line, that is a vertical line through the input,
iii. Tickmark the output on the output ruler,
iv. Draw an output level line, that is a horizontal line through the
output,
v. Then use:
» A solid dot to indicates that the intersection of the input level
line and the output level line is a plot point, (The input-output
link then goes from the marked input to the plot point to the
marked output.)
or, as we wll need occasionally,
» A hollow dot to indicates that the intersection of the input
level line and the output level line is not a plot point.

TEMO 2.1 Plot the input-output pair ( =3, +40 ),

Output
ruler p _ ~
i. We tickmark the input [=3 on ol Plot point s
H +70} creen
the input ruler, ool
ii. We draw the input level line e iv, Qutput level line
L[/ t-Output
through | =3, jgg,um utpy =
iii. We tickmark the output o e
+40 on the output ruler, o I3
_ (0}
iv. We draw the output level line 3 o1 5
- i Q
through +40 , 3|2 <
v. We plot the intersection of the § o
input level line with the output = |-t y,
level line. (3] +40) L e Input
(The plot point is the elbow of 7 -6 -5-4[81-2 -1 041 +2 43 +4454647 ruler
the input-output link) i. Mark Input

LANGUAGE 2.1  This setup is not the one used in most textbooks but
in the real world it is standard practice to keep the rulers out of the way:

axis
histogram
bar graph
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s LR
UJU

Table Histogram Bar graph
What happened is that Descartes, the inventor of ANALYTIC GEOME-
TRY, did not believe in negative numbers so when he used the 0-level
lines as his rulers they were (almost) out of the way as usual.
But when mathematicians accepted negative numbers, they kept the 0
-level lines as rulers even though these were now in the middle of the
picture which confuses input and output tickmarks with plot points:

Descartes plot Modern plot

4. From a plot point, we can get back the input-output pair using:

PROCEDURE 2.2 To get the input-output pair from a plot
point

i. Draw an input level line through the plot point,

ii. The input is where the level line intersects the input ruler,
iii. Draw an output level line through the plot point,

iv. The output is where the level line intersects the output ruler.

TEMO 2.2 Get the input-output pair from the plot-point
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Output
ruler

w0}
+80
+70
0o}
+50
+40 [
+30
+20
+10

ol
=10}
_20 -
=30

-70 Screen

-00F  \_

J

. Input

-7 6 -5-4 -3 -2 -1 0+1 42 +3 +4 +5+6 +7 ruler

i. We draw the input level line
through the plot point,

ii. The input is where the
input level line intersects the
input ruler: | —2

iii. We draw the output level
line through the given plot
point,

iv. The output is where the
output level line intersects the
output ruler: +10

iv. Output
L N
I P/otpoint:]
& Qutput /evelk.
§
)
]
=
T
S
o
= Screen
3
@
- J
‘...‘v“.”...‘lnut
-7 6 —5—4—3-—1 0 +1 +2 +3 +4 +5+6 +7 ruler
\ ii. Input

4 Functions Specified By A Global Graph

99

curve

On the experimental side of engineering and the sciences, relations are also
often specified by a curve drawn across a screen by some instrument.

1. These relation though are not necessarily functions because there
might very well be input level lines with more than one intersection with

the curve.
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graph
EXAMPLE 2.19.  Given the curve curve in more than one point:

Outputs Outputs
+80 F
+70 igg L
=

140k Screen iigi Screen
+30 +30F
+20 +20F
+1g [ +10F
ol
-10f [
N o

-0 /
S -30r
—40F a0t
=or 50t
—70F N -60
-80F / or
(curve ) Inputs Inputs

5-4 32 -1 0+1 +2 +3 +4+5

the input-level lines for inputs be-
tween —1 and +2 intersect the

[
5-4-3-2-1 0+1 42 +3 +4+5

So the curve does not specify a

function

2. But if it so happens that the curve meets the

DEFINITION 2.2 (Restated) Functional requirement

No input level line intersects the curve in more than one point.

then the curve will specify a function and we will say that the curve is the
graph of that function.

EXAMPLE 2.20.

Given the curve

Outputs Outputs
/

+80 +80
+70 +70
+60 +60
+50 +50
+40F Screen +40 Screen
+30 +30
+20 +20
+10 +10

or o]
-10f % -10
20 / 20
-30r |/ -30
—a0r |/ - -40
-50F | N -50
-60F | / -60
-70F -70
-80r / -80

(curve ] Inputs (curve]) Inputs

54 -3 2-1 0+1 +2 +3 +445

no input-level line intersects the

curve in more than one point:

54 -3-2-1 0+1 +2 +3 +445

So the curve specifies a function
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3. When a function is specified by a graph, we get the plot point at
a given input using:

PROCEDURE 2.3 To get the plot point at zy for a function
specified by a global graph

i. Tickmark the given input on the input ruler,

ii. Draw the input level line through the given input,

iii. The plot point is the intersection of the input level line with the
graph,

TEMO 2.3  Get the plot point at —3 for the function specified by

Outputs
+100}
+80[
+80
+70[
+60[-
+50[
+40[
+30[
+20[
+10[
ok
il
il
-30f
40
-50[-
-60[-
=70
__gg' Screen
-100
76 5 4 6 5 -1 0 +1 45 13 +4 1546 +7 IMPULS
i. We tickmark the input [=3 on the Outputs
input ruler, o
.. . . oL
ii. We draw the input level line through 90| i Graph poi
-3 +aof
T . . . . +30[
iii. The plot point is at the intersection 20
2oL
. . . o
of the input level line with the graph, Lo
-20f S
-30 py
-40f 2
-50[ 2
-60[- 3
701 §
__gg [ = Screen
-100
Input SR S o s ey InPuts
i. Mark Input Number

4. When a function is specified by a global graph, then, for a given
input, we get the output using:
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PROCEDURE 2.4 To get the output at x( for a function spec-
ified by a global graph.

i. Tickmark the giveninput on the input ruler,

ii. Get the plot point with ?? (?7?)

iii. Draw the output level line through the plot point,

iv. The output is at the intersection of the output level line with the
output ruler.

TEMO 2.4 Get the output at —3 for the function specified by

Outputs
+100}
+80
+80
+70[
+60[
+50
+40[
+30[
+20[
+10[
o
-100
i
=
—40f
-50[-
-60[-
-70}-
:gg' Screen
-100
7654 6 5 -1 041 28 v 15647 INPULS
i. We tickmark the input | —3 on the Outputs
input ruler, sy .
.e . +70l iii. Graph poi
il. We use 77 to get the plot point, ool
ese . 50
iii. We draw the output level line Taof
through the plot point, +29
:
iv. The output is at the intersection o
. . Ny o ©
of the output level line with the = S
C 9 &
output ruler: +20 = 3| 3
-60 518
=70 IS
_'988.' = Screen
100 |
BB (Outpud) ——s— g~ v sy Inputs
i. Mark Input Number

5 Functions Specified By A Global I-O Rule

Nevertheless, both in engineering and the sciences, the name of the game is
functions specified “mathematically” rather than by tables or curves.

1. Functional symbols. The following is completely standard:
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a. We will use f as name of a generic function. z
b. We will use: unspecified input
' /(@)

» X as a.n unsp.ec1ﬁed input which is like an empty box waiting for us unspecified output
to specify the 'input | f

‘—>

arrow notation

» f(x),toberead f of & , as the unspecified output which is like Reverse Polish Notation

explicit function

output-specifying code

global input-output rule

and therefore

an empty box waiting for the function to return the output .

EXAMPLE 2.21. Say JOE is the name of our favorite parking meter.
Then [& represents the slot waiting for us to put the coins and JOE(x )
represents the display where the parking time that JOFE will give us in return

for our |coins| will appear.

c. We will then use % to write the so-called arrow notation
@ — f(l 2

EXAMPLE 2.22. In Example 3.11 we can write the arrow notation

g —22F JOE(z)

2. The first of the two “mathematical” ways engineers and scientists
use to specify a function is the way used for the functions to be investigated
in this volume, namely:

DEFINITION 2.3 Explicit Functions are functions specified by a
global input-output rule in which f((@) is specified in terms of
z by some output-specifying code:

@ —I1 . f(&) = Code that specifies f(@) in terms of &
e ~——
Unspecified input Unspecified output Output-specifying code

3Thus, '&!f , known as the Reverse Polish Notation for the output, would be
much better code than f( @) because:
i. In the arrow notation, x would be ahead of f in both places: & L f.

ii. Not to mention that ‘& f requires no parentheses.

(https://en.wikipedia.org/wiki/Reverse_Polish_notation) Unfortunately, even
Hewlett Packard was eventually forced to abandon the Reverse Polish Notation.


https://en.wikipedia.org/wiki/Reverse_Polish_notation
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(The reason we have to say “global” is that later we will have to distinguish
global input-output rules from “local” input-output rules.)

EXAMPLE 2.23. In the global input-output rule
-2.71 4.2
v —EL L STLL(e) = T1(x + 54.23)

-~ —5.68z3 +217.43°
—2.71(z+54.23)

the output-specifying code is 568254217 43

From now on,

AGREEMENT 2.2 Function will be short for explicit function but only
in this volume.

6 Declaring Inputs

Since explicit functions involve output-specifying code, our first step in in-
putting [something will always be, as programmers do and no matter what

the [something , to declare the [something by writing the declaration

z <+ something

to the right of anything in the arrow notation involving [Z".

EXAMPLE 2.24. Say JOE is the parking meter in Example 3.14 so that
the arrow notation is as in Example 4.15:
JOE

il —— JOE(R,

To declare that we put |3 Quarters in the slot, we write the declaration

x + 3 Quarters

to the right of anything in the arrow notation that involves (& :

JOE
| —%F — JoB(a) |
x < 3 Quarters x < 3 Quarters

Then, after the replacement is done, we have

3 Quarters — 79 7 OE( 3 Quarters )

where JOE( 3 Quarters ) stands for what shows on the display.
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The _ can be a givable number xy but most of the time, the

_ will be a neighborhood of a point.

1. Given a function f, in order to input a givable number xy, we
declare that the unspecified input [& is to be replaced by the givable number
2o | which we do by writing the declaration

‘ T < TO
to the right of anything in the arrow notation that involves [Z:
f

z —>f(:c)‘

T < X0 T < X0

Then, after the replacement has been done, we have

5 —— f(@)

EXAMPLE 2.25. Given the function FFRAN, in order to declare the givable
number —31.76 we write
x _ IRAN , PRAN(&) |
x +— —31.76 x +— —31.76
Then, after the replacement has been done, we have
FRAN

—31.76 — Y, FRAN(—31.76)

2. Given a function f, in order to input a neighborhood of a givable

number g, we will declare the generic nearby number ' xg & h which we do
by writing the declaration

‘w<—wo®h

to the right of anything in the arrow notation that involves the unspecified
input (@ :

T+ x20Dh T+ x0Dh

so that, after the replacement has been done, we have



result
Yo
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EXAMPLE 2.26. Given the function MIKEF, to thicken the given input
-, we declare the actual input _
| MIKE , MIKE() |

z — —3L76Bh

Then, after the replacement has been done, we have

—3176@h — MY MIKE(—-31.76 & h)

z +— —3L76Dh

7 Returned Outputs

Given a function f, after we have declared whatever - we want to

input, the output-specifying code will usually return something . (But not
necessarily, see Note 2.1, page 53.)

1.
qualitative Cartesian setup
Given a function f, after we have declared the given number zg, the
output-specifying code will usually return a resulting number. (But not
necessarily, see Note 2.1, page 53.)
Using yo as generic code for a resulting number, we can write:

f
o —— f(@o) = wo
or just
f
To — Yo
which, inasmuch as it involves the name of the function, is a more precise
way to write the input-output pair
Lo, Yo )

one which we will use especially when there is more than one function in-
volved in a situation.

EXAMPLE 2.27. Say JOF is the function in Example 3.14 so that the

arrow notation is as in Example 4.15

N JOE (&) ,
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and that we put 3 Quarters in the slot as in Example 2.25 so that we have:

3 Quarters — /95—, JOE( 3 Quarters )

Now say JOE showed 45 Minutes on the display . (The internal mechanism
of the parking meter is the real world equivalent of the output-specifying code.)

Then we would write

3 Quarters — 795, JOE( 3 Quarters ) = 45 Minutes

or just

3 Quarters _JOE | 45 Minutes

which, inasmuch as it involves the name of the parking meter, is a more precise
way to write the input-output pair
( 3 Quarters , 45 Minutes )

one which we would use when, say, comparing different parking meters.

2. Given a function f, after we have thickened the given number xg,
the output can turn out to be quite complicated. In fact, dealing with
f(zo @ h) is going to be a major part of our investigations. This is because
f(xo @ h) is going to depend on h and what the output-specifying code is
going to do with h is going to depend very much on the kind of function f
is.

is sometimes used as a short for outputs for nearby inputs but doing so
would risk being extremely misleading because

NOTE 2.2 Nearby outputs are not necessarily near the output for the
given input.

EXAMPLE 2.28. Given the function JILL whose global graph is,
+eoA Outputs Offscreen

Screen
Inputs

ﬁ +o00
+5.38 +5.43
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graph
onscreen graph » For nearby inputs left of +5.4 JILL returns outputs near +12.7. For
offscreen graph instance, JILL(+5.38) = +12.68

» For nearby inputs right of +5.4 JILL returns outputs near +14.3. For
instance, JILL(+5.43) = +14.41
and neither +12.68 nor +14.41 are near JILL(+5.4) = +13.8

So:

AGREEMENT 2.3 Nearby output will never be used in this text.

=======Begin WORK ZONE======= graph point will be used with
qualitative Cartesian setup and global graph for qualitative graphs that
include large inputs and small inputs

3. Of course, even though we can only draw on the screen, there are
inputs too large to be drawn on the screen so that the global graph of a
function really consists of two parts:

e The onscreen graph which is the part of the global graph that ... shows
on the screen,

e An offscreen graph which is the part of the global graph that ... does
not show on the screen and for which we reserved the offscreen space.

Outputs \ D/)’
Offscreen
Offscreen Graph

+50
=00 Screen Onscreen Graph
+30

+20
IR )\
Inputs

+10F
H i
-3-2-1 0+1 +2

EXAMPLE 2.29.

/

Of. /
o /

-30}
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8 Omnscreen Graph

The onscreen graph involves the medium inputs for which the function re-
turns medium outputs

9 Functioning With Infinity

Obviously, because  The tolerance is a plain decimal number (Page 8),

NOTE 2.3 oo can neither:
i. be declared as an input in output-specifying code,

nor

ii. result as an output from output-specifying code.

However this is not going to cause us any trouble because we will be able to
thicken oo to large with

THEOREM 2.1 large
i. x can be declared to be large
ii. large can result from output-specifying code.

ExAMPLE 2.30. Let REC be the function specified by the global input-
output rule:

o 1Y REC(z) = Reciprocal of x

Then we get from Theorem 1.2 Reciprocal of qualitative sizes (Page 38):

input  output

large  small
small large

10 Computing Input-Output Pairs

1. We can now show how we get input-output pairs using a global
input-output rule:



execute
decode
perform
format
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PROCEDURE 2.5 To get the output at the given input z(

i. Declare the unspecified input [& to be the given number [Zg

T — f(@) = Code specifying f(@) in terms of (&
TN <— |20

Output-specifying code
Z < |20

so that, after the replacement is done, we have

xo I f(@xg) = Code specifying f((@p ) in terms of &g

Output-specifying code
ii. Execute the output-specifying code that is:
a. Decode the output-specifying code which means write out the
computations specified by the output-specifying code.
b. Perform the computations specified by the output-specifying
code and thus get the number yo which f(lzg) is.

iii. Format the input-output pair according to the purpose:
e For computational purposes, use the equality
(@) = wo
e For graphic purposes, use the pair:
(%4, yo)
e For conceptual purposes, use the arrow notation:

!
o — Yo

TEMO 2.5 Get the output at —3 for the function specified by
JAOK  , JACK(z) = —4z & +7

i. We declare that z is to be replaced by | —3 :

z IACK | TACK (z) = 4z +7

T——3 T——3 T——3
so that, after the replacement is done, we have

mg JACK . JACK(3) = -4(Z8)o+7

—————
output-specifying code

ii. We execute the output-specifying code that is:
a. We decode the output-specifying code which says to multiply the number
—4 by a copy of the input —3 and then to @ the number +7

= —4(58) @ +7
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b. We perform the computations:
=+4+12¢ +7
=419

iii. Format the input-output pair:
e For computational purposes: JACK(—-3) = +19
e For graphic purposes: (—3,+19)

e For conceptual purposes: | =8| —2°% 119

2. Graphically, we can then use

PROCEDURE 2.6 To get the plot point at a given input for
an algebraic function

1. Get the output returned for the given input by the function with
7?7 (?7),

2. Get the plot point for the input-output pair with ?? (??)

11 Fundamental Problem

Our overall goal in this text will be, roughly speaking, the investigation of

various, very different, ways that functions can return outputs. But it is
often useful to see on a global graph those inputs for which the function will
return outputs that meet some requirement we are interested in.

EXAMPLE 2.31. Given the function M ILT specified by the global graph
Outputs
:ig \\ I \‘ Screen I/]
s \
+1(D) \\
-10
-20
-30
Offscreen

4 3-2-10 Inputs

find the inputs whose output is less than +20. From the onscreen graph,



join
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Outputs

Screen: |

+50
+40
+30
+20
+10

0 \
-10

”
—
N

-20
-30

Offscreen

43210+ Inputs

we see that the answer is “All inputs between —2 and +1"

So, in fact, we will devote quite a bit of time and energy to the

DEFINITION 2.4 FUNDAMENTAL PROBLEM 7o get the global
graph of a function specified by a global input-output rule.

12 Joining Plot Points

Indeed, solving the FUNDAMENTAL PROBLEM is almost never a simple
matter because declaring given inputs can almost never get us a global graph
any more than given numbers can specify an amount of stuff. Yet, chances
are you were once told that to get the global graph of a function specified
by a global input-output rule, you “just” had to:

i. Declare a few inputs and compute the outputs returned by the func-
tion for these inputs.

ii. Plot these input-output pairs,

iii. Join the plot points.
However, this so-called “procedure” is in fact total garbage which we there-
fore have to “dispose of properly”:

1. Narrow mindedness To begin with, this so-called “procedure”
cannot possibly get us the offscreen graph since the only input-output pairs
we can plot are those for medium inputs as medium inputs are the only
inputs we can declare in a global input-output rule. Which is already re-
grettable since just because something is offscreen doesn’t mean it is not
interesting.
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EXAMPLE 2.32. “Many ancient civilizations collected astronomical in-
formation in a systematic manner through observation." See https://en.
wikipedia.org/wiki/History_of_science

But what is most regrettable is that much of what happens onscreen is
caused by what happens offscreen.

EXAMPLE 2.33. Even though what happens on earth is what we are
immediately concerned with, much of what happens on earth depends on what
happens very far away: tides are due to the pull of the moon and all the energy
we use originates, one way or the other, from the sun and life on earth would
cease instantly if the sun were to black out.

So:
Question i. How do we know what’s onscreen is all there is to see??

This is in fact a complicated question which we will address in Chapter 4
Features Near oo.

2. Incomprehensibility But this so-called “procedure” is not likely
to get us the onscreen graph either because of three additional questions®:

Question ii. How do we know which medium inputs we are to declare
in the global input-output rule?
Question iii. How do we know which way to join the plot points?

Question iv. How do we know, after we have somehow joined whatever
plot points we somehow got, if the curve we get is the onscreen graph?

EXAMPLE 2.34. Given a function specified by some global input-output
rule, suppose we somehow got the following input-output pairs and therefore
the plot:

*Which Educologists do not seem to wonder about or even be aware of.
5Educologists have much to answer for never even raising these questions.


https://en.wikipedia.org/wiki/History_of_science
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Outputs

Offscreen

Inputs ‘—4 -3 -2 +1 +2 +4 2

Outputs | =1 +3 0 -1 -2 +3 2

Which of the following would you then say is the onscreen graph of the function:

Outputs Outputs Outputs
Offscreen Offscreen Offscreen
+6 +6 | +6 1 }
+5 # +5 | +5 \ /
T4 | i 14 4 \
+3 \ ! +3 \ +3
+2 [1.T\ +2 +2 /
+1 \ \ +1 A\ +1 [
0 | ] 0 \ \ 0 |
S / B : B
3 N W AV J 3 \ 3 [l
-4 | \ 4 | -4 | Ly
5 Ereemy) 5 | 1 7 5 1l | areen
-6 | -6 | | -6 L]
Inputs Inputs Inputs
S bbb LOLEELEE ShhbbLOLELLEE S b LOLEELEE
Outputs Outputs Outputs
Offscreen Offscreen Offscreen
+6 +6 | +6 I
+5 +5 +5
+4 \ 4 +4 /
+3 +3 AV +3
+2 \ \ +2 \ +2
+1 \ +1 / / +1
0 | / \ / 0 /
-1 I -1 / -1
2 | 2 -2 )
-3 -3 / -3
iy Screen 2 Screen 2 [ Screen
-6 % -6 |
Inputs Inputs Inputs
ShhbOLOELE LTS ShhbALOREERES ENUE SRR iy

As Example 2.34 demonstrates the answers to the above questions are:

Question ii. How do we know which medium inputs we are to declare
in the global input-output rule?

Answer: At the very least, which inputs we declare will have to depend on
the nature of the particular function we are trying to graph,

Question iii. How do we know which way to join the plot points?
Answer: Other than very exceptionally, there cannot possibly be a set way
to join smoothly a plot,

Question iv. How do we know, after we have somehow joined whatever
plot points we somehow got, if the curve we get is the onscreen graph?
Answer: On the basis of only a number of plot points, there is no way we
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can decide what the global graph is going to look like.

As always in the real world, recreating an analog entity (a global graph)
from a discrete sampling (a plot) is nowhere near simple.

EXAMPLE 2.35. Ask a sound engineer: how do you recreate from, say, a
CD (discrete sampling) a music performance (analog signal)?

3. At this point, we were usually told “just get more plot points” but
too many plot points can in fact make it impossible to join smoothly.

EXAMPLE 2.36. The function SIN E belongs to the next volume, TRAN-
SCENDENTAL FUNCTIONS, but the point here is Strang’s Famous Computer
Plot of SINE ©:

Outputs
+1.0| AL

+0.5

0 +200 +400 +600 +800 +1000 Inputs

How are we to “join smoothly”?

And even computer generated graphs cannot always be taken at face value.

EXAMPLE 2.37. Given the function specified by the global input-output
rule
CAT a® —1
x———— CAT(z) =

-2
which of the following computer generated graphs is the right one?

5The plot appears on the back cover of Strang’s Calculus, 1991, Wellesley-Cambridge
Press, where it is discussed in Section 1.6 A Thousand Points of Light, pages 34-36.
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Outputs

Offscreen

. Screen

N
7,

(@)

%

Outputs

Offscreen

i Screen

Outputs
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Offscreen

i Screen

/nputs

Outputs

0 %,
%

Offscreen

Screen

Outputs

Offscreen

i Screen

Inputs

-20 -10 0
Outputs

+10 +20

Offscreen

. Screen

|

Inputs

Inputs Inputs L L ;

4. Since we cannot rely on declaring Inputs (Page 64) to get the global
graph of a function specified by a global input-output rule, we will have to
develop:

i. What to use instead of plot points to get an onscreen graph which we
will do in Chapter 3 Features Near zq
ii. How to get the offscreen graph, which we will do in Chapter 4 Features
Near oo,
iii. How to put all this together to get a global graph which we will do
in Chapter 5 Global Analysis
In those three chapters, though, our goal will only be:
e To introduce and discuss graphically the necessary concepts and
e To provide the reader with the means for picturing the “why” and the
“how” of the computations we will need to do later when we investigate
given algebraic functions.
Then, with ?? 7?7, we will finally start on our systematic investigation of
increasingly complicated algebraic functions in which, of course, we will get
their global graph.



In a crime novel, the victim is
not the story. The story is
around the victim.

Anonymous crime writer

Chapter 3

Features Near x

Local Place, 77 e Local graph, 80 e Local code, 81 e Local Height, 82

e Local extreme, 84 e Zeros And Poles, 87 e Conclusive information,
89 e Local Slope, 92 e Local Concavity, 94 e Pointwise Continuity, 96
e Local Smoothness, 100

You may recall that:

i. We saw in 7?7 ?7that when we specify in the real world a given amount
of stuff xp, the number we get when we measure the actual amount of stuff
will always differ from zg by an error h so that the actual amount of stuff
is described by x¢ + h

ii. We saw in section 10 that just getting f(z¢) can almost never get us
any information about f(zotp).

So, given a function f and given an input xg, we now have two reasons for
wanting to thicken the given input xq into a neighborhood of x(, that is into
xo + h and then investigating f(xo + h).

1 Local Place

Thickening input numbers into input neighborhoods implies that we first
need to do a thick equivalent of picturing Input-Output Pairs (Section 3,
page 55.)

1. We will thicken |input level lines into input level bands , that
is into vertical bands through the input neighborhoods.

7

input level band
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output neighborhood EXAMPLE 3.1.  We will thicken into the input level band
output level band . .
the input level line

Offscreen

A Outputs A Outputs
Offscreen

Screen Screen

. Input level band
j Input level line g 5

: Inputs InpuE

; > = >
-31.6 -31.6 -31.6 th
Given input Given input  Actual input

2. On the other hand, we won’t always be able to thicken an loutput

into an loutput neighborhood because it is the function which returns
the nearby outputs and f(xo + h) is not necessarily going to be near f(xg)
(nearby outputs are not necessarily going to be near the resulting output)
which, in fact, may not even exist. See note 2.1 We will discuss this in
Section 8 Smoothness near co. (Page 131)

But should we somehow know that f(zg+ h) is near f(z¢) (that is that
nearby outputs are near the resulting output), then we will thicken the
output level line into an output level band that is a horizontal band
through the neighborhood of f(xg).

EXAMPLE 3.2. We will thicken into the output level band
the output level line

A Outputs

Offscreen Offscreen
Screen Screen
Vol Bl v L U0 R
N/ Outputilevel line :’—Oufput level band
Inputs Inpuis

>
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3. Since a plot point is at the intersection of an input level line and an local graph place
output level line, we will thicken a [plot point into a local graph place , sided local graph place
that is into the rectangle at the intersection of an input level band near zq

and an output level band near f(zg).

However, inasmuch as we will usually deal separately with each one of
the two

77

(??)7

we will usually know which side of the input is linked to which side of
the output

and the sided local graph place will then consist of two smaller rect-
angles, one on each side of the input level line. To get a sided local graph
place then,

we just thicken

PROCEDURE 3.1 To get the sided local graph place for an
input-output pair knowing which side of the input neighbor-
hood is paired with which side of the output neighborhood.

i. Mark a neighborhood of the input on the input ruler,

ii. Draw the input level band,

iii. Mark a neighborhood of the output on the output ruler,

iv. Draw the output level band,

v. Mark which side of the input neighborhood is linked to which

side of the output neighborhood ,

vi. The place for the given input - output pair is at the intersection
of the corresponding sides of the level bands.

TEMO 3.1 Get the sided place for ( +3, —5 ) given that:
O 43T —— =B

e +37 —— -5~
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i. We mark a neighborhood of +3 Outputs Offscreen
on the input ruler, 0 OO T k\

ii. We draw the input level band S =S :

through the neighborhood of +3, i—)

iii. We mark a neighborhood of —5 (B |

Sided
on the output ruler, Graph Place
iv. We draw the output level band Output lelel band Screen
through the neighborhood of —5 Elnput/evelband
v.Mark: e left of +3 — above —5

¢ i s v Inputs
e right of +3 — below —5 oy

vi. The sided graph place for ( +3, —5) is at the intersection of the corre-
sponding sides of the level bands.

2 Local graph

In some cases , depending on the kind of information we want, we will be
able to get this information from the local graph place but in most cases we
will need the local graph near xg, that is the part of the global graph in
the local graph place. To get the local graph near a bounded input then, we
just thicken ?? (?7):

PROCEDURE 3.2 To get the local graph near zy of a function
specified by a global graph

i. Mark a neighborhood of zg on the input ruler,

ii. Draw the input level band through the neighborhood of g ,

iii. The local graph near xg is the intersection of the input level
band with the global graph.

TEMO 3.2 Get the local graph near —3 of the function whose global graph
is
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Outputs <
Offscreen >
local code
angles
)
0
Inputs
6 +1
i. We mark a neighborhood of —3 A Outputs

on the input ruler,

ii. We draw the input level band
through the neighborhood of —3 ,
ili. The local graph near —3 s the
intersection of the input level band
with the global graph,

i
iii. Local Graph ;
i

Screen

i. Mark the

InEut Neiéhborhooé

1. Input|level band

Offscreen

Inputs

3 Local code

In order to describe separately what happens on each side of the given input,
we will need:

DEFINITION 3.1 Local Code near x

i. We will use a pair of angles, ( ), to stand for the input neigh-
borhood with a comma , between ( and ) to stand for x.

ii. We will have to face xgp when coding local features.

iii. Then, the code that will record the local feature for

nearby inputs that are nearby inputs that are
lefi of x; right of x;
will go will go
left of »

rieht of
NV ¥ e
(H.
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h(flght . TEMO 3.3 Set up for the local code to record the local behavior near +3.27
Height-sign AOutputs
Screeng
Offscreen Inputs

+3.27

Since the local graph is near a bounded input, we are facing it and we will code
the local feature as we see it onscreen:
Va4 \ Ny,
‘ ,

+3.27

LEFT/RIGHT

<o)

4 Local Height

Given a function f and a given input xg, we will thicken the output at zg

into the 'height near xg. As the use of the word “near” indicates, the
height is a local feature and we will occasionally remind the reader of that
by saying “local height” instead of just “height”.

EXAMPLE 3.3.
The output at 43 The Height near +3
Outputs Outputs
I b/\
Screen Screen
Offscreen Inputs Offscreen ‘ Inputs
+. > +2.8 +3.2 >

is —12 is —12 + small

1. The Height-sign of f near xg is the sign, + or —, of the outputs
for nearby inputs on each side of the given input.
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PROCEDURE 3.3 To get the Height-sign near a given input height-size

of a function from its global graph,

i. Get from the local graph the sign, + or —, of the outputs for nearby

inputs on each side of the given input,
ii. Code Height-sign f according to Definition 3.1 (Page 81)

TEMO 3.4 Get Height-sign near +5 for the function TAN from the local graph
near +5

od Outputs

Offscreen

‘; Screen /
\Vj

P R/

Inputs
HI
e 5

+00

i. We get from the local graph the sign of the ii. We code the Height-sign:
outputs for nearby inputs on each side of +5: Height-sign TAN near +5 = (=, +)
e The sign of the outputs left of +5 is —

e The sign of the outputs right of +5 is +

2. The height-size of f near a given input is the qualitative size,
large, bounded or small, of the outputs for nearby inputs on each side of

the given input.

PROCEDURE 3.4 To get the Height-size near a given input
of a function from its global graph,

i. Get from the local graph the qualitative size, large, bounded or
small, of the outputs for nearby inputs on each side of the given

input,
ii. Code Height-size f according to Definition 3.1 (Page 81)

TEMO 3.5 Get Height-size near +5 for the function AN from the local graph
near +5
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od Outputs

Offscreen

; Screen /

O:IL‘ ‘N/ v

Inputs

—o0

Fau
=% +5 ED

i. We get from the local graph the qualitative ii. We code the Height-size:

size, large, bounded or small, of the outputs . .
for nearby inputs on each side of +5 : Height-size TAN near +5 = (large, small)
e The size of the outputs left of +5 is large

o The size of the outputs right of +5 is small

TEMO 3.6 Get Height-size near oo for the function /AN from the local graph

near oo
+od Outputs

Offscreen

Screen

Inputs

+00

—o0

i. We get from the local graph the qualitative ii. We code the Height-size:

ize, [ , bounded I1, of the outputs f
Sl2€, HArge, houmnded of smat, © ) & outputs for Height-size TAN near oo = (large, small)
nearby inputs on each side of oo :

e The size of the height left of oo is large
e The size of the height right of oo is small

5 Local extreme

We will often compare the output at a given bounded input with the height

near the given bounded input.
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1. A local maximum-height input is a bounded input whose out- local ntl?lXimllm-h(ﬁght
put is larger than the height near the bounded input. In other words, the Imp_ul .
output at a local maximum-height input is larger than the outputs for all 1()12;1_11116111?;111111111-height
nearby inputs. input

xg is al local maximum-height input whenever f(z¢) > f(xo+ h) ‘

We will use Tmax-height as a name for a local maximum-height input.

LANGUAGE 3.1 x,ax is the usual name for a local maximum-height
input but xmax tends to suggest that it is the input x that is maximum
while it is the output, f(Zmax), which is “maximum”.

Graphically, the local graph near 'y ax-height is below the output-level line

for Tmax-height -

EXAMPLE 3.4. The function has a local maximum at —23.07
Outpuzsp because the output at —23.07 is
Offscreen larger than the outputs for nearby
Qutput level line , .
OF Xmaximumt-height InPUtS
N for X, '1 gk 4
f (Ximaximun-height)
Screen
el Inputs
- Tinaximum-height ~23.07 +eo
EXAMPLE 3.5. The function has a local maximum at +4.32 be-
Outputs cause the output at +4.32 is larger

than the outputs for nearby inputs

Offscreen

Output level line
for Xmhximum-height /l
4 f

Screen

—00 Inputs

.-

—co.
Fmaximum-height +4.32

2. A local minimum-height input is a bounded input whose out-
put is smaller than the height near the given input. In other words, the
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Tmin-height
local extreme-height input

output at a local minimum-height input is smaller than the outputs for all
nearby inputs.
x¢ is al local minimum-height input whenever f(z¢) < f(zo + h) ‘
We will use Zmin-height s name for a local minimum-height input.

LANGUAGE 3.2 =z, is the usual name for a local minimum-height
input but xmin tends to suggest that it is the input x that is minimum
while it is its output, f(Zmin), which is “minimum”.

Graphically, the local graph near Tyin-height is above the output-level line
for Zmin-heieht-

EXAMPLE 3.6. The function has a local minimum at +81.35

OutpytsA because the output at +81.35
offscreen is smaller than the outputs for
f (Xmimmum-helgln) nearby inPUtS
N |
Output |evel line \f
for Xmipimum-height Screen
el Inputs
- i e #8135 =

EXAMPLE 3.7. The function

Outputsp

Output

»‘mvn\m'

>

level line for

im-height /l
|

,
\

J (mini

mum—hcighl)

Screen

Offscreen

Xminimum-heigie +37.41

Inputs

+o

has a local minimum at +37.41
because the output at +37.41
is smaller than the outputs for
nearby inputs.

3. Local extreme-height input are bounded inputs which are ei-
ther a local maximum-height input or a local minimum-height input.

NOTE 3.1 Local extreme-height inputs can only be bounded inputs.
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4. Minimization problems and maximization problems (https://en.
wikipedia.org/wiki/Mathematical _optimization) as well as min-max
problems (https://en.wikipedia.org/wiki/Minimax) are of primary im-
portance in real life. So,

e It would be pointless to allow co as a local extreme-height input since it
cannot be reached in the real world,

e It would be meaningless to allow +o0o as a locally largest output since
400 is always larger than any output or to allow —oo as a locally smallest
output since —oo is always smaller than any output.

6 Zeros And Poles

1. Given a function f, a zero of f is a bounded input whose Height-
size is (small, small). We will distinguish two kinds of zeros according to
their parity:

» An even zero is a zero whose Height-sign is either (+,+) or (—, —).

EXAMPLE 3.8. For the function f the bounded input 46 is an even

specified by the global graph zero because:
A Outputs » the outputs for inputs near +6
are all small,
Screen » Height-sign f near +6 = (—, —)

(Same signs.)

Offscreen

Inputs

» An odd zero is a zero whose Height-sign is either (4, —) or (—, +).

Zero
parity
even zero
odd zero


https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Minimax

pole
parity
even pole
odd pole
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EXAMPLE 3.9. For the function f
specified by the global graph

Output s

Screen

Offscreen
Inputs

Chapter 3. Features Near xg

the bounded input +6 is an odd

zero because:
» the outputs for inputs near +6

are all small,
» Height-sign f near +6 = (+, —)
(Opposite signs.)

2. Given a function f, a pole of f is a bounded input whose Height-
size is (large,large). We will distinguish two kinds of poles according to

their parity:

We will distinguish two kinds of poles according to their parity:

» An even pole is a pole whose Height-sign is either (+,+) or (—, —).

EXAMPLE 3.10. For the function f

specified by the global graph

Outputs
Offscreen

Inputs

+6

the bounded input 46 is an even

pole because:
» the outputs for inputs near +6

are all large,
» Height-sign f near +6 = (—, —)
(Same signs.)

» An odd pole is a pole whose Height-sign is either (+, —) or (—,+).
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EXAMPLE 3.11. For the function f  the bounded input 4+ — 4 is an odd $1°P¢

specified by the global graph pole because:

outputs » the outputs for inputs near —4
g are all large,

» Height-sign f near —4 = (+, —)
(Opposite signs.)

conclusive
inconclusive

+oo
Screen

-0

Inputs

7 Conclusive information

Inasmuch as we can see the Magellan input and the Magellan output, a
Magellan view is conclusive while a Mercator view may often be incon-
clusive.

EXAMPLE 3.12. ~ The Mercator view

A Outputs g

: Screen

Offscreen

Inputg,

%
is inconclusive regarding the outputs for inputs near +6 because when zooming
out we could get something like
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continuation

A Outputs A Outputs

: Screen

: Screen

Offscreen Offscreen

: Inpug ) :
+6 or like +6

Inputg,

But

e While the Mercator view on the left would be conclusive regarding the
outputs for inputs near +6,

e The Mercator view on the right would still be inconclusive.

On the other hand, the Magellan view

would be conclusive as we would see that the input +6 is a pole.

For the sake of simplicity, from now on

AGREEMENT 3.1 Mercator view The Mercator view will always be
assumed to be conclusive.

In other words, the offscreen graph will always be assumed to be a con-
tinuation of the onscreen graph. Of course, this begs the question: What
is a continuation? For the time being we will just give a couple of examples
and leave the answer for when we have local features with which to describe
things.

EXAMPLE 3.13. To assume that the Mercator view



7. Conclusive information 91

A Outputs

P

: Screen

Offscreen

H Inputs
+6 >

is conclusive regarding the outputs returned for inputs near +6 is to assume
that when zooming out we would get something like

A Outputs i A Outputs

* Screen : Screen

Offscreen : Offscreen

s e,

% but not like +6

Inasmuch as we can see the Magellan input and the Magellan output, a
Magellan view is .

EXAMPLE 3.14. ~ The Mercator view

A Outputs g

: Screen

Offscreen

Inputg,

a;
is inconclusive regarding the outputs for inputs near +6 because when zooming
out we could get something like
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slope

slope-sign A Oueuts \ Ouputs

: Screen : Screen

Offscreen g Offscreen

: Inpu& . Inputg,
+6 or like +6

But

e While the Mercator view on the left would be conclusive regarding the
outputs for inputs near +6,

e The Mercator view on the right would still be inconclusive.

On the other hand, the Magellan view

would be conclusive as we would see that the input +6 is a pole.

8 Local Slope

1. Inasmuch as, in this text, we will only deal with qualitative infor-
mation we will be mostly interested in the slope-sign: .

PROCEDURE 3.5 To get Slope-sign near a given input for a
function specified by a global graph

i. Mark the local graph near the given input

ii. Then the slope-sign is:
 when the local graph looks like ./ or /7, that is when the outputs
are increasing as the inputs are going the way of the input ruler,
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. when the local graph looks like \\ or \, that is when the outputs
are decreasing as the inputs are going the way of the input ruler.
iii. Code Slope-sign f according to Definition 3.1 (Page 81)

LANGUAGE 3.3 Slope-sign The usual symbols are + Instead of " and

— instead of \_but, in this text, in order not to overuse + and —, we
will use / and \_!

TEMO 3.7 Let HIC be the function whose Mercator graph is

Output
Input

Ruler:
+2 Ruler

and let the given input be +2. Then to get Slope-sign HIC' near +2

Offscreen

Screen

i. We get the local graph near the ii. We then get
given input: - The slope sign left of 42 is
ouues 4 -The slope sign right of +2 is \
Offscreen
which we code as:
\/ Slope-sign HIC near +2 = (\,\)
A Inputs

+2

TEMO 3.8 Let HIP be the function whose Mercator graph is

Output
Ruler

Screen

Offscreen

Input
Ruler

and let the given input be co. Then to get Slope sign HIP near oo

'Educologists will surely appreciate “Sign-slope f =/ iff Sign-heigth f' = +”.
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concavity
concavity-size
concavity-sign
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i. We get the local graph near the ii. We then get that:
given input: - The slope sign left of oo, that is near
0utptit°5° +OO, iS /

- The slope sign right of co, that is
near —oo, is \

which we code as:

Slope-sign HIP near oo = {/,\)

Screen

Offscreen

\ / Inputs

—e oo

2. In this text, we will not deal with slope-size other than in the
case of a 0-slope input that is an input, be it ¢ or oo, near which slope-
size is small. This is because 0-slope inputs will be extremely important
in global analysis as finding 0-slope inputs comes up all the time in direct
“applications” to the real world:

EXAMPLE 3.15. The function EXAMPLE 3.16. The function

Outputs A outputs

+o0

Offscreen
Offscreen

Screen

Screen

VP ey

Inputs
17 o o 3.4 oo

—
=

has both —17 and oo as 0-slope inputs Only +3.4 is a 0-slope input.

9 Local Concavity

1. Inasmuch as, in this text, we will be only interested in qualita-
tive analysis we will not deal with the concavity-size but only with the
concavity-sign:
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PROCEDURE 3.6 To get Concavity-sign near a given input
for a function specified by a global graph

i. Mark the local graph near the given input
ii. Then the concavity-sign is:
U when the local graph is bending up like \\ or ./,
N when the local graph is bending down like 7~ or \.
iii. Code Slope-sign f according to Definition 3.1 (Page 81)

LANGUAGE 3.4 Concavity-sign The usual symbols are + Instead of
U and — instead of N but, in this text, in order not to overuse + and —,
we will use U and N.2

TEMO 3.9 Let KIP be the function whose Mercator graph is

A
- \

Offscreen

Screen

- In;ﬁ/ts
oo

-3 0

and let the given input be —1. Then to get Concavity sign KIP near —1

i. We get the local graph near the given input: |ii. We then get that:
Outputs A -The concavity sign left of —1,
is U
-The concavity sign right of
—1,is N

which we code as:

Screen

Concavity Sign KIP near —1 = (U,N)

Inputs

o 1 oo

2. Given a function f, the inputs whose Concavity-size is 0 will be
particularly important in global analysis:

A bounded input zg is a O-concavity input if inputs that are near xg

have small concavity. We will use Zo_concavity to refer to 0-concavity inputs.

2Educologists will surely appreciate “Sign-concavitye f = U 4ff Sign-heigth f” = +".
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continuous at g
continuous

EXAMPLE 3.17.

whose Mercator graph is

Outpog

Offscreen

Screen

vin

Inputs

—o0 +00

-21.04

LO—concavity = —21.04

10 Pointwise Continuity

Given the functionEXAMPLE 3.18.
whose Mercator graph is

Outputs A

Chapter 3. Features Near xg

Given the function

; Offscreen

Screen

Inputs

i
i
i
4m—>
o +oo

+31.72

LO—concavity = +31.72

The use of nearby inputs instead of the given input raises a most important
question: To what extent are the nearby outputs (outputs for nearby inputs)
all near the output at the given input? And, as it turns out, the question has
no simple answer. So, as a backdrop to what will be the case with Algebraic
Functions, we will just illustrate some of the many different possible answers.

1. Continuity at xg. Given a bounded input xg, a function f is
continuous at xg when all the outputs for nearby inputs are themselves

near f

EXAMPLE 3.19.

-52.420

(o), the output at x.

The function

Outputs

Offscreen

Inputs

is continuous at +13.06 because:

» the output at +13.06 is —52.42

and

» the outputs for all nearby In-
puts, both left of +13.06 and
right of +13.06, are themselves
near —52.42.
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EXAMPLE 3.20.  The function is continuous at —18.71 because (?S(“m?nuous .
> the output at —18.71 is —12,28 (scontinuous at o
Offscreen and Junlp

hollow dot
» the outputs for all nearby In- 1oHow do

puts, both left of —18.71 and
right of —18.71, are themselves

~12.28% !
Screen i near —1228

Inputs

o
—18.71

2. Discontinuity at zy. Given a bounded input zg, a function is
discontinuous at x¢ when not all the outputs for nearby inputs are near
f(zo), the output at zp.

e A function can be discontinuous at xg because the function has a jump
at xg, that is because the outputs for nearby inputs on one side of x( are
all near one bounded output while all the outputs for nearby inputs on
the other side of zg are near a different bounded output.

Since we use solid dots to picture input-output pairs, we will use hollow
dots for points that do not picture input-output pairs.

EXAMPLE 3.21.  The function is discontinuous at +3 because the

O é function has a jump at +3 that is:
: » the outputs for nearby inputs

right of 43 are all near +15,

IS y but
» the outputs for nearby Inputs

left of +3 are all near +13.

+13 e ——————————

Inputs




gap

cut-off input
on-off function
transition function
transition input
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EXAMPLE 3.22.

+11.6

+7.2

The function

Outputs
Offscreen

Inputs

Chapter 3. Features Near xg

is discontinuous at —9 because the

function has a double jump at —9

that is:

» even though the outputs for
nearby inputs, both inputs right
of —9 and inputs left of —9, are
all near +7.2,

» the output for —9 itself is
+11.6.

e A function can be discontinuous at xg because the function has a gap at
Tg, that is because the function does not return a bounded output for zg

EXAMPLE 3.23.

Outputs

+7.

The function

Offscreen

Inputs

is discontinuous at —9 because the

function has a gap at —9 that is:

» even though the outputs for
nearby inputs, both inputs right
of —9 and inputs left of —9, are
all near +7.2,

» there is no output for —9 itself.

e Actually, discontinuous functions are quite common in Engineering.

EXAMPL

E 3.24.

The following on-off functions are both discontinuous

but are different since the outputs for the cut-off inputs are different.

+eo| Qutputs Offscreen
FEY ] — _<:) .................
0 e, .:_
Cutoff |
output !
Screen |
o | Inputs
Foo

Cu

tof_fwinput — 4 3

+esl Outputs Offscreen
Cutoff
outpuﬂ |
+3.7 | ——®
0 ............................... (‘)—
Screen §
—o0 | Inputs
400"

Cutof_fminput 4 i
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quasi-continuous at

EXAMPLE 3.25. removable discontinuity at

The following transition functions are both discon-
tinuous but are different since the outputs for the transition inputs are

remove
different. override

+oo| Qutputs Offscreen +o| Qutputs Offscreen supplement

EEY O] 1 e — O
TranSItIOn 0 ................................ ‘. ................ Tr‘al’]SItIOI’] i
output ) i output i

1 e e Pe SE— 1 e e P —

Screen | Screen |
oo : Inputs oo : Inputs
_3 +oa” 3 +oa”

Transition input — 7

=) —
Transition input — 7

e And, finally, there are even functions that are discontinuous everywhere!
See https://en.wikipedia.org/wiki/Nowhere_continuous_function

3. Quasi-continuity at xg. A function is quasi-continuous at x
if the discontinuity could be removed by overriding or supplementing
the global input-output rule with an input-output table.

LANGUAGE 3.5 Removable discontinuity at xgis the standard term
but, for the sake of language consistency, rather than saying that a func-
tion has (or does not have) a removable discontinuity at xo, we will
prefer to say that a function is (or is not) quasi-continuous at x.

The function in
Example 3.22 is discontinuous at
—9 but the discontinuity could be
removed by overriding the input-

ExXAMPLE 3.26.

Outputs
Offscreen

output pair (—9,+11.6) with the e
input-output table 7
Input  Output

_9 +72 __ Inputs
%


https://en.wikipedia.org/wiki/Nowhere_continuous_function

smoothness
kink

smooth
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11 Local Smoothness

For several reasons, smoothness is quite a bit more difficult to pin down
than continuity.

1. Roughly, smoothness extends to slope and concavity the require-
ments that continuity made on the height namely that slope and concavity
should not change abruptly. There is a big difference though:

e In the case of continuity, we need to look at what happens at the given
input and then to what happens near the given input but only to see if
there is a jump and not even when there is a gap at zg.

e In the case of slope and concavity, on the other hand, even with local
graphs, neither slope nor concavity makes sense at the given input and
what matters is only what happens near the given input.

NOTE 3.2 Smothness near vs. smoothmess at Most unfortunately,
the usual mathematical concept of smoothness implies continuity which
is not the way we think of smoothness in the real world.

EXAMPLE 3.27. A PVC sewer and drain pipe is usually perceived as being
“smooth" regardless of whether or not it is solid or perforated and a smoothly
bending copper pipe doesn't stop being so if and when it develops a pinhole.

So, in this text and in trying to picture smoothness, we will go by f(zo+
h) and not pay any attention to f(xg).

2. The first degree of smoothness is for the slope to be continuous,
that is, to borrow a word from plumbing, we don’t want the curve to have
any kink. More precisely, we don’t want any input xy for which there is a
“jump in slope” from one side of zy to the other side of zy. In other words,
we don’t want any input xy for which the slope on one side differs from the
slope on the other side by some bounded number.

3. The second degree of smoothness is for the concavity to be contin-
uous but this is much harder to picture because it is hard to judge by just
looking how much a curve is bending.

So, in this text, smoothness will refer to just the first degree of smooth-
ness, that is for the curve to have no kink which, fortunately and as we will
see, will make it easy to be “reasonable” about smoothness.



11. Local Smoothness 101



102 Chapter 3. Features Near xg



Shoes need feet to walk!

Everything needs something to

function!. compactification
Magellan input
Mehmet Murat ildan input Magellan circle

Chapter 4

Features Near oo

Compactification, 103 e Local graph place near oo, 106 e Local graph
near oo, 108 e Offscreen graph, 111 e Local code near oo, 115 e Height
near oo, 117 e Continuity at oo, 125 e Smoothness near oo, 131 .

While what we will do in this chapter near oo will essentially be the same
as what we did near zg in Chapter 3 Features Near xg, the difficulty near
oo will be “seeing” large numbers in the Mercator view as they really are.

1 Compactification

This is where the Magellan view will be most helpful because, not only is
the information provided by the Mercator view not always conclusive with
regards to large numbers, but the Magellan view will often explain what
happens offscreen and therefore also what happens onscreen.

1. Magellan inputs So, the first thing we need is the equivalent of a
Cartesian setup with an input Magellan circle in place of an input ruler

103



output Magellan circle
thicken

neighborhood of oo
nearby input
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Outputs

Offscreen

Screen

Inputs

Large inputs /\/Lcwer Upper\j\ Large inputs
bound bound

° % Oltjeiss Offscreen
oL Large
-~ O
outputs \‘
? 1 Magelkan input
Upper Screen boo
bound| -
/,/' 1
e | Offscreen:
Lower 7 b
bound ! 1
T
Large
) Screen ,' o
- outputs
58 1
83 Input Mageltan circle
Inputs

2. We will thicken [&0' into a neighborhood of co. Then, by
nearby inputs, with co going without saying, we will mean large inputs
Since we will use the words near inputs both when the given input is xq
and when the given input is oo, we must clarify:

NOTE 5.1 (Restated) Location of essential inputs will be short for

outputs returned by the function f for nearby inputs that is:

» When the given input is bounded, nearby inputs are bounded inputs
near the given input,

» When the given input is oo, nearby inputs are large bounded inputs
near the oo,

3. Magellan views are conclusive.
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Any answer, though, will obviously depend on whether or not oo is limit
allowed as Magellan input and Magellan output and the reader must be 1Put level band
warned that the prevalent stand in this country is that oo does not exist
and that one should use limits. (For what limits are, see https://en.
wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason
and certainly for none ever given.!

As for us, we will allow oo as Magellan input and Magellan output,
an old, tried and true approach. See https://math.stackexchange.com/
questions/354319/can_a_function_be_considered_continuous_if_it_
reaches_infinity_at_one_point and, more comprehensively, https://
en.wikipedia.org/wiki/Extended_real _number_line.

Nor can we declare a Magellan input because oo can neither: (Page 69).

However, in both cases we can, and will, declare nearby inputs and so,
even though the computations will actually be different, the concept will be
the same and so it will be convenient to agree that, from now on, a

AGREEMENT 4.1 Given input can be either a bounded input zq or
the Magellan input oc.

5. We will thicken input level lines into input level bands that is
vertical bands through the input neighborhoods.

A Outputs
1 Offscreen

Screen

(f Input level band L

! Inputs’
) o

3 t

I Neighborhood of oo +oo

!The absolute silence maintained by Educologists in this regard is rather troubling.



https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Extended_real_number_line

local behavior
local analysis
locate

global analysis
local graph place
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6. On the other hand, we won’t always be able to thicken an output
into an output neighborhood because it is the function which returns
the outputs for nearby inputs and the outputs for nearby inputs may not be
near the output at the given input. (We will discuss this in the next section,
Smoothness near co. (Page 131)

Nevertheless, we will often have to use output level bands that is
horizontal bands through the neighborhoods of outputs

Outputs

+oo Offscreen

Screen

[Neighborhood of oo]

Output level band.

—00

Inputs

'

7. The local behavior of a function f at a given input will then
be determined by the outputs returned by f for nearby inputs. The local
analysis of f will be the investigation of the local behaviors of f.

In contrast, locating the input(s), if any, at which a function f has a
required local behavior will be a problem in global analysis inasmuch as
it will involve searching among all possible inputs.

Since plot points are at the intersection of an input level line and an
output level line, we will thicken plot points into local graph places at the
intersection of an input level band and an output level band.

But given an input, be it oo or xg, we will usually deal separately with
each side of the input neighborhood. See ?? 7?7 (??) and 7?7 77 (?7?7.). We
will thus know which side of the input is linked to which side of the output
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and the sided local graph place will then consist of two smaller local sided local graph place
graph places, one on each side of the given input.

1. We obtain the procedure to get a sided local graph place just by
thickening 77 (Page 57):

PROCEDURE 4.1 To get the sided local graph place for an
input-output pair knowing which side of the input neighbor-
hood is paired with which side of the output neighborhood.

i. Mark a neighborhood of the input on the input ruler,

ii. Draw the input level band,

iii. Mark a neighborhood of the output on the output ruler,

iv. Draw the output level band,

v. Mark which side of the input neighborhood is linked to which

side of the output neighborhood ,

vi. The place for the given input - output pair is at the intersection
of the corresponding sides of the level bands.

TEMO 4.1 Get the sided place for ( —4, oo ) given that:
e 4 —— —o0

o 4t —— +o0

i. We mark a neighborhood of —4 , Outputs
on the input ruler, s
ii. We draw the input level band
through the neighborhood of —4 , Neighborhood of oo
iti. We mark a neighborhood of oo
on the output ruler, Output{level band
iv. We draw the output level band
through the neighborhood of oo ,
v.Mark: e left of —4 — near —cc .

TITTTT T RRRN

Screen
Offscreen

Sided
Graph Place

Input level band

Neighborhood of —4 4

vi. The sided graph place for ( =4, oo ) is at the intersection of the corre-
sponding sides of the level bands.

Inputs

TEMO 4.2  Get the sided place for (oo, +2 ) given that:
o —00o—— +2F
O =469 — |Sr40



108 Chapter 4. Features Near oo

i. We mark a neighborhood of oo on
the input ruler,

ii. We draw the input level band
through the neighborhood of oo , .

iii. We mark a neighborhood of +2 ~  *2J&% 200 M
on the output ruler, i
iv. We draw the output level band
through the neighborhood of +2,

v.Mark: ¢ —0c0 — +2F

e {00 — +27 i InEputs
y b 400

—00
Neighborhood of 00
vi. The sided graph place for (oo, +2) is at the intersection of the corre-

sponding sides of the level bands.

(Cltiipiiis Offscreen

Output level band
Screen

TEMO 4.3  Get the sided place for ( 0o, oo ) given that:
¢ —00—— —0
e +00 —— —o0

i. We mark a neighborhood of oo on Outputs

the input ruler, +00 Offscreen
ii. We draw the input level band +

through the neighborhood of oo ,

iii. We mark a neighborhood of oo Output fevel band

on the output ruler, Neighborhood of o0 ) Sided Graph Place
iv. We draw the output level band
through the neighborhood of oo , Inqut level ba

v.Mark: ¢ —0c0 — —

Screen

e +00 — —00

: Inputs

—o0 ) +00
Neighborhood of co

vi. The sided graph place for (0o, oo ) is at the intersection of the corre-
sponding sides of the level bands.

3 Local graph near oo

As we will see, the local graph place near oo will get us the information we
want for some local feature but in most cases we will need the local graph
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near oo near the given input, that is the part of the global graph which is
in the local graph place.

Later, we will get local graphs from the global input-output rule but for
the time being, and since in this chapter we only want to name and describe
local features, the global input-output rule will go without saying and, as
per 7?7 (?7), we will get local graphs from the global graph of the function.

1. Local graph near co When the given input is co, how we proceed
depends on whether we have a Mercator view or a Magellan view of the
global graph:

e With a Magellan view of the global graph, we proceed pretty much as in
7?7 and once we imagine facing oo, we can see which side is which.

EXAMPLE 4.1.

“*-'g"" st THAI2el negr 400 which is to his left is left
-/ of oo and the local graph near —oo
which is to his right is right of co.

/”*- @ Jack is facing oo so the local graph

= Left side
& ofthe

& /local graph

near oo

Right side
of the
local graph
near oo

e With only a Mercator view of the global graph, there is of course no way
we can get the whole local graph near co and we will have to content
ourselves with just the extremities of the local graph near co. However,
since we cannot face oo and can only face the screen, we have to keep in
mind ?7 7?7 (??) so that

» The extremity of the local graph near +o0o (left of oo ) is to our right,
» The extremity of the local graph near —oo (right of oo ) is to our
left.

local graph
extremity
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EXAMPLE 4.2.

Outputs Offscteen

/\/ Local graph
near +oo
Jill'd LEFT Jill's RIGHT

Inputs

&

Local graph
near —o

Chapter 4. Features Near oo

Jill is facing the screen so she can
only see the extremities of the lo-
cal graph near oo and she must
keep in mind ?? ?7 (?7) so that
the local graph near +o0o (to her
right) is left of oo and the local
graph near —oo (to her left) is
right of oco.

But then we can still use 7?7 to get a local graph near oco.

TEMO 4.4  Get the local graph near oo of the function whose Mercator

graph is
Outputs
Offscreen

Inputs

64—1

i. We mark a neighborhood of oo
on the input ruler by marking the
part of the input ruler beyond the
bounds.,

ii. We draw the input level band
through the neighborhood of oo ,
iii. The local graph near co is the
intersection of the input level band
with the global graph,

A Outputs

ii. Local Graph

ii. Input level band
ii. Input level band

i. Mark the

Offscreen

Inputs

w~
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4 Offscreen graph

We come now to 7?7 which we raised in ?777. More precisely, an onscreen
graph is very likely to be inconclusive in that the information given by an
onscreen graph is most likely to depend on both:

e The input bounds.

EXAMPLE 4.3. The onscreen graph within the input bounds
—200, 4200

Output s

Offscreen

A

Screeh

-100

Inputs,

00200
is not conclusive because, increasing the input bounds from —200, 4200 to
—400, 4400 may give the onscreen graph

Output s
Offscreen
+100‘.4......,........‘
Screen "-‘
—-100 1
Elnpu
400 +400 just as well as the onscreen graph
A Outputs
Offscreen
B0 0 e
Screen
—-100 i
Elnput
-400 +400 >

e The output bounds.

conclusive
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local graph near oo
EXAMPLE 4.4. The onscreen graph within the output bounds
—100, 4100

A Outputs
Offscreen

H100

e

Screen

—-100

Input;

200 +200

is not conclusive because, increasing the output bounds to —200, 4200 may
give for the very same inputs
A Outputs

Offscreen

200
Inpu& ) )
200  +200 which would be conclusive
A Outputs

T — Risceey

-200
. Inputs, . .
just as well as 200 +200 which still would not be con-
clusive.

So, the offscreen graph can involve two very different kinds of inputs.

1. The offscreen graph always includes the Local graph near oo,
which is the part of the global graph, for large inputs left and right of the
screen. Even though the local graph near oo is really in one single piece
because large inputs are in a neighborhood of oo, the local graph near oo
appears to be in two pieces, one piece on each side of the screen:

» The part of the local graph near oo for inputs near —oo, that is for inputs
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that are —large and which is therefore left of the screen but right of co. Polar graph
» The part of the local graph near co for inputs near +oo, that is for inputs
that are +large and which is therefore right of the screen but left of oc.

On the other hand, keep in mind that even for large inputs, a function may
return outputs of any qualitative size, bounded, large or small.

EXAMPLE 4.5. EXAMPLE 4.6.
Outputs A Outputs A
+oo Offscreen Foo Offscreen
Screen Screen
+3.42 7‘-
0 |-z
Magellargraph Magellargraph - \
near -0 near +00
s y Magellargraph Magellargraph
near -0 near +00
—00 Inputs —00 Inputs
—00 400 —00 +:0

The large inputs both left and right » Thelarge inputs left of the screen
of the screen have large outputs. have small outputs,
» The large inputs right of the
screen have bounded outputs,

2. The offscreen graph may include parts, the polar graphs, which
are for bounded inputs that are near poles, that is near bounded input(s)
for whose nearby inputs the function returns large outputs. A polar graph
is in two parts, one on each side of the pole

» The left part of the polar graph, that is the part of the polar graph which
is for nearby inputs that are left of the pole,

» The right part of the polar graph, that is the part of the polar graph
which is for nearby inputs that are right of the pole,



114 Chapter 4. Features Near oo

$64,000 Question

EXAMPLE 4.7. EXAMPLE 4.8.
Output: Output:
+o0 400
Offscreen Offscreen
Screen Screen

/\/ v

; Input: —®
pole— 3138 +00 ey 1822 +00 i
» The nearby inputs left of —31.38 The nearby inputs both left and right
have +large outputs, of4+18.22 have +large outputs.

» The nearby inputs right of —31.38
have —large outputs,

3. Kinds of offscreen graphs Because, as we will see, some alge-
braic functions do not have any pole while some algebraic functions do have
pole(s), what the offscreen graph will be in each instance will depend on the
answer to what will turn out to be the

DEFINITION 4.1 $64,000 Question

e Do all bounded inputs have bounded outputs?
or

e Is(Are) there any pole(s)?

So, the first step in our overall approach to the 7?7 will be:
PROCEDURE 4.2 To get the offscreen graph.

i. Get the local graph near oco.
ii. Answer the 77:
iii. Get the polar graph(s) if any.

In other words, depending on the answer to the , there will be two kinds
of offscreen graphs:
e If the function has no pole, that is if the function returns bounded outputs

for all bounded inputs, then the offscreen graph will include just the local
graph near oco.
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EXAMPLE 4.9.

! Outputlf

OulpuA Magellan graph

+o0 +o0 Magellan graph +o0

Output g

Offscreen |  Screen

Screen Offscreen

Offscreen

el Input

Input —o0

\ Input.

115

Magellan graph

= A" Neighborhood of a2 Foo =2 A Neighborhood ot Bt

- A Neighborhood ofmJ +eo

e If the functional requirement has pole(s), that is if there are bounded
input(s) near which the function returns large outputs, then the offscreen
graph will include polar graphs in addition to the local graph near oc.

EXAMPLE 4.10.

Outputh Output
400 +oo
Offscreen

+o0
Offscreen

Screen|

Polar grap

Screen Polar gra

Polar graph

Offscreen

Inputs

]
-
—» Po\e\y oo —0 Pole

5 Local code near oo

k__~Pole

+o0

Since there is no reason to expect the local behavior of a function to be the
same on both sides of the given input, be it xg or oo, see 7?7 77 (?7) and
??7 7?7 (?7), in order to describe separately the local behavior on each side

of the given input, we need:

DEFINITION 4.2 Local Code

Given an input, be it zy or oo,
i. We will use a pair of angles to stand for the input neighborhood
with a comma in-between the angles to separate the sides: (
ii. We must face the given input when coding local features.
iii. Then, the code that records the local feature for nearby inputs

).

{
)

local code
angles
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nearby inputs that are nearby inputs that are
left of x;, right of x
will go will go

right of ,

left of
—
(H. .

(Keep in mind that when the given input is co we must imagine facing
oo to know which is the left side and which is the right side of 00.)

TEMO 4.5 Set up for the local code to record the local behavior near oo
according to the local graph

Outputs .
A Screen /

Offscregn
N
—o0 7 Y +oo

Inputs

Since the local graph is near infinity, which we can only imagine facing, to

encode the local behavior, the local feature
for inputs left of co for inputs right of 00
goes left of the comma. goes right of the comma.

(v

(m- )

We must imagine facing oc:

=
(2
“mj? rdLesbet
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6 Height near co height
Height-sign

We will just extend the concept of D for a bounded input zy to the concept

of local height for oo

The Height near oo

“‘T Outputs
/N
+7.8
473 \\/
44444444444 Screen
w Offscreen Inputs
—0 +o0

is —large for inputs left of co and —small for inputs right of oo
Given a function f, we will thicken the output at a given input, be it
T or 0o, into the height near the given input.

EXAMPLE 4.11.

The output at +3 The Height near +3 The Height near oo
A Outputs A Outputs *‘X’T Outputs
b B e s \\//\
123 8 e /i +7.3 ¥ [
Screen Screen """""" Screen
Offscreen Inputs Offscreen Inputs w Offscreen Inputs
> -
+3 2.8 432 —® oo
is —12 is —12 + small is —large for inputs left of
oo and —small for inputs
right of oo

1. The Height-sign of f near a given input is the sign, + or —, of
the outputs for nearby inputs on each side of the given input.

PROCEDURE 4.3 To get the Height-sign near a given input
of a function from its global graph,

i. Get from the local graph the sign, + or —, of the outputs for nearby
inputs on each side of the given input,
ii. Code Height-sign f according to Definition 3.1 (Page 81)
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TEMO 4.6 Get Height-sign near +5 for the function IAN from the local graph

near +5
tod Outputs

Offscreen

Screen

Inputs

= & W2

—o0

i. We get from the local graph the sign of the ii. We code the Height-sign:
outputs for nearby inputs on each side of +5: Height-sign TAN near +5 = (—, +)

e The sign of the outputs left of +5 is —
e The sign of the outputs right of +5 is +

TEMO 4.7 Get Height-sign near oo for the function TAN from the local graph

near oo
tod Outputs :
Offscreen }

2

Screen

\ Inputs
L

+00

—o0

i. We get from the local graph the sign of the ii. We code the Height-sign:

outputs for nearby inputs on each side of oo : Height-sign TAN near 0o = (+,—)

e The sign of the height left of oo is +
e The sign of the height right of oo is —

whose Height-sign is either (4, +) or (—, —). In other words, poles and

ZEros are even
whose Height-sign is either (4+, —) or (—,+). In other words, poles and

zeros are odd
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——————=—End WORK ZONE=—==—=—=—=—=— height-size

2. The height-size of f near a given input is the qualitative size,
large, bounded or small, of the outputs for nearby inputs on each side of
the given input.

PROCEDURE 4.4 To get the Height-size near a given input
of a function from its global graph,

i. Get from the local graph the qualitative size, large, bounded or
small, of the outputs for nearby inputs on each side of the given
input,

ii. Code Height-size f according to Definition 3.1 (Page 81)

TEMO 4.8 Get Height-size near +5 for the function AN from the local graph

near +5
od Outputs
Offscreen |
‘: Screen/
0 Lo\
i \V
T N2
e 3 Inputs
2,
—o0 hnry 50
i. We get from the local graph the qualitative ii. We code the Height-size:

size, large, bounded or small, of the outputs

for nearby inputs on each side of +5 : Height-size TAN near +5 = (large, small)

e The size of the outputs left of +5 is large
o The size of the outputs right of +5 is small

TEMO 4.9 Get Height-size near oo for the function AN from the local graph
near oo
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T oo-height 4o Outputs 3
T0-height Offsereen :

Screen

—o0 \ Inputs
¢

— +00

i. We get from the local graph the qualitative ii. We code the Height-size:
size, large, bounded or small, of the outputs for

nearby inputs on each side of 50 : Height-size TAN near co = (large, small)

e The size of the height left of oo is large
e The size of the height right of oo is small

3. The concept of Height provides us with conveniently systematic
names:

e For a pole: Too_height
e For a zero: To.neight

To do for the offscreen graph what we did in Chapter 3 for the on-
screen graph requires that we first thicken infinity just the way we thickened
bounded inputs in Chapter 3.

Obviously, the means in the case of co will be quite different from the
means we used in Chapter 3 for bounded inputs but, interestingly enough,
the ends in both cases, that for infinity as well as that for bounded inputs,
will be strikingly similar.

In fact, even the means, if not similar, will nevertheless remain in remark-
ably the same spirit and the reader should make every effort to identify and
determine this spirit.

A function can be discontinuous at xg because the function has a pole
at xg.



6. Height near oo 121

EXAMPLE 4.12.  The function is discontinuous at —4 because not conclusive

Outputs inconclusive

Offscreen

only does the function have a gap

at —4 but the function has a pole

at —4 that is:

» the outputs for nearby inputs,
both inputs right of —4 and in-
puts left of —4, are all large,

but

Inputs » —4 has no bounded output.

400
Screen

—0

4. Conclusive information Inasmuch as we can see the Magellan
input and the Magellan output, a Magellan view is conclusive while a
Mercator view may often be inconclusive.

EXAMF\’LE 4.13. The Mercator view
Output s
7 /\
-

Screen

Offscreen

Inputg,

is inconclusive regarding the outpust returned for large inputs because when
zooming out we could get something like

A Outputs Output s
-7 k -7
T
Screen
Offscreen Offscreen
Inputg or ||k e Inputg

which would both still be inconclusive regarding the outputs returned for large
inputs. On the other hand, either one of the Magellan views,
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Offscreen
Screen

and

would be conclusive as we would see:

e from the Magellan view on the left that, for the Magellan input oo, the
function returns the bounded output —7,

e from the Magellan view on the right that, for the Magellan input oo is a
pole.

EXAMPLE 4.14. To assume that the Mercator view

A Outputs

P AN

~

Screen

Offscreen

Inputg

is conclusive regarding the outputs for large inputs is to assume that when
zooming out we would get something like

A Outputs A Outputs
-7 k -7
— St
Screen
Offscreen Offscreen
ouls, but not like ouls,




6. Height near oo 123

EXAMI:LE 4.15. The Mercator view
Output s
7 /\
-

Screen

Offscreen

Inputg,

is inconclusive regarding the outpust returned for large inputs because when
zooming out we could get something like

A Outputs Output s
-7 k -7
——— NS
Screen
Offscreen Offscreen
Inputg or I | k e Inputg

which would both still be inconclusive regarding the outputs returned for large
inputs. On the other hand, either one of the Magellan views,

Offscreen
Screen

Offscreerf

\ Screen
v
\
\

and

would be conclusive as we would see:

e from the Magellan view on the left that, for the Magellan input oo, the
function returns the bounded output —7,

e from the Magellan view on the right that, for the Magellan input oo is a
pole.

For the sake of simplicity, from now on
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continuation

AGREEMENT 4.2 Mercator view The Mercator view will always be

assumed to be conclusive.

In other words, the offscreen graph will always be assumed to be a con-
tinuation of the onscreen graph. Of course, this begs the question: What
is a continuation? For the time being we will just give a couple of examples
and leave the answer for when we have local features with which to describe

things.

EXAMPLE 4.16. To assume that the Mercator view

Output s

: Screen

Offscreen

Inputg

6

is conclusive regarding the outputs returned for inputs near +6 is to assume

that when zooming out we would get something like

A Outputs : A Outputs
Screen Screen
Offscreen Offscreen
Inputg_ . : Inputs,
+6 but not like 6
EXAMPLE 4.17. To assume that the Mercator view
A Outputs
-7 /\
~

Screen

Offscreen
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limit
is conclusive regarding the outputs for large inputs is to assume that when

zooming out we would get something like

A Outputs A Outputs
-7 k -7
a4 N/
Screen
Offscreen Offscreen
s, but not like houls,

EXAMPLE 4.18. For the function the Magellan input oo is a zero be-
Outputs, cause:
Offscreen the outputs for nearby inputs,
Sereon both inputs right of co and in-
. \,\//\,\ puts left of oo, are all small,
—o Inputs

7 Continuity at oo

The use of nearby inputs instead of the given input raises a crucial question:
Are the outputs for nearby inputs all near the output at the given input?

Any answer, though, will obviously depend on whether or not oo is
allowed as Magellan input and Magellan output and the reader must be
warned that the prevalent stand in this country is that oo does not exist
and that one should use limits. (For what limits are, see https://en.
wikipedia.org/wiki/Limit_(mathematics).) This for no apparent reason
and certainly for none ever given.?

As for us, we will allow oo as Magellan input and Magellan output,
an old, tried and true approach. See https://math.stackexchange.com/
questions/354319/can_a_function_be_considered_continuous_if_it_

2The absolute silence maintained by Educologists in this regard is rather troubling.


https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point

Magellan continuous at
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reaches_infinity_at_one_point and, more comprehensively, https://
en.wikipedia.org/wiki/Extended_real_number_line.

As a backdrop to what we will be doing with Algebraic Functions, we
will now show some of the many different possible answers to the above
question. For clarity, we will deal with bounded inputs and bounded outputs
separately from oo as Magellan input and Magellan output.

Keep in mind that we use solid dots to picture input-output pairs as
opposed to hollow dots which do not picture input-output pairs.

1. Magellan continuity at xg. A function is Magellan contin-
uous at zg when we could remove the discontinuity at xg by overriding
or supplementing the global input-output rule with an input-output table
involving co as Magellan output.

EXAMPLE 4.19. The function
in Example 4.12 is discontinuous at
—4 because the function has a gap
at —4 but Magellan continuous as
we could remove the gap by supple-
menting the global input-output rule
with the input-output table

Input Output

—4 00

2. Magellan continuity at oco. A function is Magellan contin-
uous at oo when we could remove the discontinuity at co by overriding
or supplementing the global input-output rule with an input-output table
involving oo as Magellan input and/or as Magellan output.


https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://math.stackexchange.com/questions/354319/can_a_function_be_considered_continuous_if_it_reaches_infinity_at_one_point
https://en.wikipedia.org/wiki/Extended_real_number_line
https://en.wikipedia.org/wiki/Extended_real_number_line

7. Continuity at oo

EXAMPLE 4.20. The function

Outputs

Offscreen

1

is discontinuous at oo but is Mag-
ellan continuous since we could
remove the discontinuity with an
input-output table involving oo as
Magellan input and Magellan out-
put,

Inputs
0 * +00

EXAMPLE 4.21. The function

Outputs

Offscreen

Inputs
coa ¢ >

— +00

is discontinuous at oo but is Mag-
ellan continuous since we could
remove the discontinuity with an
input-output table involving oo as
Magellan input and Magellan output

127

boo

3. Dealing with poles. The difficulty here stems only from whether

or not it is “permisible” to use 0o as a given input and/or as an output.
Even though, because There are no symbols for size-comparisons of
signed-numbers (Page 69), co can neither: we do use oo as a (Magellan)
input and as a (Magellan) output because, as explained in ??7 (?77?), we will
only declare nearby inputs. (Which will shed much light on the local behav-
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ior of functions, in particular on the question of continuity.)

However, the reader ought to be aware that many mathematicians in
this country, for reasons never stated, flatly refuse to use nearby inputs
with their students.

Another reason we do is because Magellan views are a very nice basis on
which to discuss the local behavior of functions for inputs near co and when
outputs are near oco. In particular, we can see that discontinuiities caused
by poles can be removed using co as a Magellan output.

When oo as is not permissible as Magellan input and /or Magellan output,
many functions are discontinuous

EXAMPLE 4.22. The discontinuity at —4 of the function in 7?7 whose
Mercator graph is

Outputs
Offscreen

+oo
Screen

Inputs

can be removed by supplementing If we imagine the Mercator graph
the global input-output rule with the  compactified into a Magellan graph,
input-output table: we have

Input  Output

—4 00

EXAMPLE 4.23. The discontinuity at co of the function BIB in 7?7 whose
Mercator graph is
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Outputs

+00

]

—

129

Offscreen

Inputs

—00

can be removed by supplementing
the global input-output rule with the
input-output table:

Input  Output

o0 ©.¢)

EXAMPLE 4.24. The function
whose the global graph in Mercator
view is
Outputs

+2_IL ...............................................

Offscreen

N " Inputs
-0 7 b +oo

is discontinuous at oo not only be-
cause the global graph has a gap at
oo since Local extreme-height inputs
but also because the global graph has
a jump at oo.

° +00

If we imagine the Mercator graph
compactified into a Magellan graph,
we have

If we imagine the Mercator view
compactified into a Magellan view,
we have




130

Chapter 4. Features Near oo

4. At oo The matter here revolves around whether or not oo should
be allowed as a given input. We did but,

Also, in this section, for a reason which we will explain after we are done,
we will have to deal separately with the case when the given input is x¢ and

the case when the given input is co.

In accordance with 77, we should say that all functions are discontinuous
at oo since the outputs for inputs near co cannot be near the output for oo
for the very good reason that we cannot use co as input to begin with.

LANGUAGE 4.1 Continuity at co At oo, things are a bit sticky:
e With a Magellan view, we can see if a function is continuous at oo or

not.

e Technically, though, to talk of continuity at oo requires being able
to take computational precautions not worth taking here but many
teachers feel uneasy dealing with continuity at co without taking these
precautions. So, we will not discuss continuity at co in this text.

EXAMPLE 4.25. The function
whose global graph in Mercator view
is

Outputs

+00 Offscreen

Scxeen

—00

Inputs
+00

—oo ! \

is discontinuous at oo because, even
though the outputs of inputs near oo
are all large,the global graph has a
gap at oo since Local extreme-height
inputs.

If we imagine the Mercator view
compactified into a Magellan view,
we have
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EXAMPLE 4.26. The function is discontinuous at —4 because the Magellan continuous at
R global graph has a pole at —4:
» the outputs for nearby inputs,
both inputs right of —4 and in-
puts left of —4, are all large,

400
Screen

—00

but, since Local extreme-height in-
puts,

Inputs

) » —4 itself has no output.

5. Magellan continuity at a pole xg. A function is Magellan
continuous at zy when we could remove the discontinuity at xg by over-
riding or supplementing the global input-output rule with an input-output
table involving oo as Magellan output.

EXAMPLE 4.27. The function
in Example 4.12 is discontinuous at
—4 because the function has a gap
at —4 but Magellan continuous as
we could remove the gap by supple-
menting the global input-output rule
with the input-output table

Input  Output

—4 00

8 Smoothness near oo
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Think globally, act locally.!

Several Mathematicians®

Chapter 5

Global Analysis

Interpolation, 134 e Feature Sign-Change Inputs, 140 e Essential
Feature Sign-Changes Inputs, 142 e Essential Extreme-Height Inputs,
145 e Non-essential Features, 146 e Essential Onscreen Graph, 148 .

that is the largest error that will not change the qualitative information
we are looking for. The largest permissible error, which is the equivalent of
a tolerance, will turn out to be easy to determine.

We can see from Chapter 3 that the reasoncould not possibly give us a
global graph is that, if a plot point may tell us where the global graph “is
at”, a plot point certainly cannot tell us anything about where the global
graph “goes from there”. And, since the latter is precisely what local graphs
do with slope and concavity, we are now in a position to:

i. Describe how to interpolate local graphs into a global graph. This
corresponds to the second of the about

ii. Describe and name global features that a function may or may not
have. As opposed to local features, which involved only inputs near a given
input, global features will involve all inputs.

iii. Discuss questions about interpolating local graphs which correspond
to the other two

i. How will we know near which inputs to get the local graphs?
ii. After we have interpolated the local graphs, how will we know if the
curve we got is the global graph?

'https://en.wikipedia.org/wiki/Think_globally%2C_act_locally
2Educologists may want to look up https://math.stackexchange.com/questions/
34053/1list-of-local-to-global-principles

133

global feature


https://en.wikipedia.org/wiki/Think_globally%2C_act_locally 
https://math.stackexchange.com/questions/34053/list-of-local-to-global-principles 
https://math.stackexchange.com/questions/34053/list-of-local-to-global-principles 

134 Chapter 5. Global Analysis

joining curve Here again, to help focussing, the functions in the EXAMPLES in this
interpolate chapter will always be presumed to have been defined by a global input-

trans1t19n mput output rule but and the global graph of the function will be provided instead.
compatible

essential interpolation

essential 1 Interpolation

forced

Interpolating will be for local graphs what joining cannot be for plot points,
that is, interpolating local graphs will eventually provide us with global
graphs.

1. Just to be part of the graph of a function, the joining curve we
draw from one local graph to the other local graph will have to meet
i. The FUNDAMENTAL PROBLEM.

But, in order for a joining curve to be an interpolation of local graphs of
algebraic functions which, as we will see, are continuous at all inputs as well
as smooth near all inputs,

ii. The joining curve will itself have to be continuous at, as well as
smooth near, all inputs,
iii. The joining curve will also have to be:
e Continuous at, as well as smooth near, the transition inputs, that is
the inputs where the joining curve meets the local graphs,
e Compatible with the local graphs, that is the slope-sign and the concavity-
sign will have to be the same on both sides of the transition inputs.

A particularly important kind of interpolation will be essential interpo-
lations that is interpolations in which

iv. The joining curve is essential, that is has only local features that
are forced by the local graphs being interpolated.

Which local graphs we will interpolate will depend on the answer in each
case to Explicit Functions.

We will now illustrate these requirements with EXAMPLES that will show
what makes a joining curve an interpolation of local graphs and what pre-
vents a joining curve from being an interpolation of local graphs.

2. When the answer to the Explicit Functions is that the function
does not have a pole, the offscreen graph consists of just the local graph
near oo and therefore we interpolate with a joining curve from one end of
the local graph near oo across the screen to the other end. The transition
inputs are thus the lower bound and the upper bound.
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In Example 5.1 to Example 5.5 we will examine whether or not the
joining curve is an interpolation for the

DATA 5.1 Function with the offscreen graph

A Outputs
Foo Offscreen
4V

Screen

/N
i
i
—00 : Inputs
|
A ~
—00 7 W Jransiion +60
inputs
EXAMPLE 5.1. For functions whose offscreen graph is as in Data 5.1,
the joining curve i. is continuous at all inputs and smooth
A Outputs / -n-ea.r all |nPuts,
Foo Local ii. is continuous at, as well as smooth near,
features .. .
Ofcroen - Z ’lu both transition inputs,
creen ese . . .
/U/ iii. is compatible with the offscreen graph
near both transition inputs,
Loca /7] iv. is not essential because the local mini-
N y | Joining mum and the local maximum are not forced
faY (A curve
i f by the offscreen graph.
— N mus 0. This joining curve is an interpolation
S _ > of the offscreen graph but not an essential
- \T.'igi";;’ﬂj + interpolation.

EXAMPLE 5.2. For functions whose offscreen graph is as in Data 5.1,
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the joining curve

+ A Outputs
o)

Offscreen

@)

A
i
A
|
|
—00 i
i

EXAMPLE 5.3.

features

Screen

Local
featuref/ [p’
/ H

P kink

Local

Jjump

i Joining
icurve

5

Inputs

inputs
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i. is continuous at all inputs and smooth
near all inputs,

ii. is not smooth near the left transition in-
put and not continuous at the right transi-
tion input,

iii. is compatible with the offscreen graph
near both transition inputs,

iv. is essential

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore

I I » ot an essential interpolation either.
—00 KTransmou +o00 p

For functions whose offscreen graph is as in Data 5.1,

the joining curve

/\ Outputs
“+o0

Offscreen

Local
features

—00

|
i
i
|
i
i
P
I W

Local
features
v
1z

Screen

A4

4

Joining
curve

Inputs

EXAMPLE 5.4.

-'KTransitiOEj

“+00
inputs

i. is not continuous at all inputs but is
smooth near all inputs,

ii. is continuous at the transition inputs as
well as smooth near both transition inputs,
iii. is compatible with the offscreen graph
near both transition inputs,

iv. is not essential because the jump is not
forced by the offscreen graph.

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore

5 not an essential interpolation either.

For functions whose offscreen graph is as in Data 5.1,
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the joining curve introduces a pole in the offscreen graph
so the function is not as in Data 5.1 any-
/\ Outputs .
+00 / more and nothing onscreen matters after
that.

Offscreen | Screen

So: This joining curve is not an interpo-
lation of the offscreen graph and therefore
not an essential interpolation either.

Ny
. — g
EXAMPLE 5.5. For functions whose offscreen graph is as in Data 5.1,
the joining curve i. is continuous at all inputs and is smooth

near all inputs,

ii. is both continuous at the transition in-

orsoeen s N (V] puts. and smoc.)th nefar the transition inputs,
iii. is compatible with the offscreen graph
near the right transition input but is not

compatible with the offscreen graph near

K\ the left transition input (Easy to miss.),

Joining H . - H
P iv. is not essential.(Easy to miss.)

A Outputs /

+0o Local
features

Local
features

| mus 0. This joining curve is not an interpo-
Ly _ » lation of the offscreen graph and therefore
- Jranstion ¥ *° not an essential interpolation either.

inputs

3. When the answer to the Explicit Functions is that the function
does have a pole Zog height, the offscreen graph consists of the local graph
near oo together with the local graph near ¥, neight and therefore we must
interpolate with a joining curve in two pieces:

e one piece between:

» the end of the right side of the local graph near oo

and
» the end of the left side of the local graph near Zo-height,

and
e another piece between:



138 Chapter 5. Global Analysis

» the end of the right side of the local graph near o peight,
and
» the end of the left side of the local graph near oo

The transition inputs are then:

e the lower bound and the extremity of the left side of the neighborhood
of T co-height

e the extremity of the right side of the neighborhood of Zog-peight and the
upper bound.
In Example 5.6 and Example 5.7 we will examine whether or not the

joining curve is an interpolation for the

DATA 5.2 Function with the offscreen graph

+°°/\ Outputs
/Y
Offscreen Screen;
s
\N i /N
i
: 3
i !/f\
|
i
{ Xoo-hpight
—00 i : ' Inputs
| i
—00 i ‘ +w3
Transition inpu
EXAMPLE 5.6. For functions whose offscreen graph is as in Data 5.2,
the joining curve i. is continuous at all inputs and is smooth
+°°/\ _— near all inputs,

ii. is continuous at all transition inputs and

oscreen ; \\JJ — smooth near all transition inputs except the
leftmost transition input,

iii. is compatible with the offscreen graph

A 7/ near all transition inputs except the leftmost

transition input,

iv. is essential.

fa)
/N

Xoo—hc'ght
—00

I
i
|
|
| mus ~ O0: This joining curve is not an interpo-
) ¢ > lation of the offscreen graph and therefore

-0 A +& -y .
Transition inpuw not an essential interpolation either.
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fudge
EXAMPLE 5.7. For functions whose offscreen graph is as in Data 5.2,
the joining curve i. is continuous at all inputs and is smooth
A Ouputs near all inputs,
+oo il. is continuous at all transition inputs and
4y smooth near all transition inputs,
Offscreen /U Screen; .. . . .
ili. is compatible with the offscreen graph
near all transition inputs,
VaVYa 7~ iy i ; ;
3 /N iv. is essential because Tmin-height is forced
al by the offscreen graph.
| . - - . . . .
! B So: This joining curve is an interpolation
o xmin—hcigﬁi it of the offscreen graph and is an essential
y AL > interpolation.

—00 !/ E v/ 1 +§
Transition inpu

4. Occasionally, we will need to interpolate with an onscreeen local
graph near a bounded input (As opposed to a local graph near a pole which
is offscreen).

5. Occasionally, we will need to fudge the offscreen graph that is .

6. So, based on the preceding EXAMPLES, to draw an interpolation,
we proceed as follows

PROCEDURE 5.1 Interpolate an offscreen graph.

i. Going from left to right, mark the features where the offscreen
graph enters the screen and where the offscreen graph exits the
screen
ii. Draw the joining curve(s) from the point(s) where the offscreen
graph enters the screen to the point(s) where the offscreen graph
exits the screen making sure that:

e Each joining curve is smooth,

e Fach transition between a joining curve and the local graph is

smooth
e The joining curves do not introduce any infinite height input.

TEMO 5.1 Let f be the function whose offscreen graph is
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400

L

i Goreen  Offscreen

:
i
i
i
i

— i Inputs
i

= Topeight %
To interpolate,
i. Mark the features where the ii. Draw the joining curve(s)
offscreen graph enters and smoothly
exits the screen:
Output i Outpuék +\v
+00 +/v ” +\v AR w +\V
v
ol — /v
+/Nn
+/n
Screen  Offscreen - Soreey Offscreen
W A
—-/Nn
== Inputs -3 Inputs
— Xoo-height _‘i —00 Xoo-height +i

2 Feature Sign-Change Inputs

We will often need to find bounded inputs such that the outputs for nearby

inputs left of xg and the outputs for nearby inputs right of xy have specified
feature-signs.

1. An input is a Height sign-change inputwhenever Height sign =

(+,—) or (—,+). We will use ZHeight sign-changet© refer to a bounded Height
sign-change input.

EXAMPLE 5.8.
Let f be the function * \ ;‘\m‘emh Then, . . .
specified by the global Lo;a‘emg ] @ T height 1S not a Height sign-

graph 0 a change input,
: % ® Tooheight IS a Height sign-
‘ change input.
S S = e 00 is a Height sign-change in-
oo put.
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EXAMPLE 5.9. .

Let f be the function *=|usse 2 o Then, _ _ _
specified by the global #'L;;‘ ® Toheight /5 a Height sign-

Graph

change input,

graph 0
#g;ﬂﬁraph Sercol [ ) .’Eoo_height IS not a HEIght S|gn‘
i Oftscreen Change input,
=l e 4., ® 00 is a Height sign-change in-
—o0 X0-height Xoo-height +o0
put.

2. An input is a Slope sign-change inputwhenever Slope sign =

(,\) or (\,/). We will use Zsiope sign-changet0 refer to a Slope sign-
change input.

EXAMPLE 5.10.
Outputsh

Let f be the function *=|ucwn > o Then, . .
specified by the global ' ® Zoslope IS @ Slope sign-change

y o, .
graph 0 N input,

® Too-height S a Slope sign-

e change input,

e 00 is not a Slope sign-change
input.

—o0 \ N\ \ inputs
. >

—00 X0-slope  Xoo-height +oo

EXAMPLE 5.11.

Outputh
Let f be the function *=|wacen > o, Then, . .
specified by the global p ® T(ope IS Not a Slope sign-
graph 0 —5 e change input,
R i ® Togslope IS Not a Slope sign-
N\ Lol Graph change input,
=l sw U, e 0o isnot aSlope sign-change
h o . input.

3. An input is a Concavity sign-change inputwhenever Concavity
sign = (U,N) or (N,U). We will use concavity sign-changeto refer to a Con-
cavity sign-change input.

EXAMPLE 5.12.
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Outputgy

Let f be the function *=| s > oeaen
specified by the global
graph

-0

EXAMPLE 5.13. .

Let f be the function —+=|wacen ﬁ‘\ueph
specified by the global

graph -

n JaXVIRYY] v
—oo  X0-concavity Xoo-height +o0

Chapter 5. Global Analysis

Then,
® T(.concavity iS5 a Concavity
sign-change input,

e ® Tog height IS @ Concavity sign-

change input.
e oo is not a Concavity sign-
change input.

Then,

® To.concavity is a Concavity
sign-change input,

® Tooheight IS not a Concavity
sign-change input,

e o0 is a Concavity sign-change
input.

3 Essential Feature Sign-Changes Inputs

1. A feature sign-change input is essential whenever its existenceis
forcedby the offscreen graph. So, given the offscreen graph of a function,

in order

PROCEDURE 5.2 Establish the existence of essential feature
sign change inputs in a joining curve

i. For each piece of the joining curve, check the feature sign at both

end of the piece.

o If the feature signs at the two ends of the piece are opposite, there
has to be a feature sign change input for that piece.
e If the feature signs at the two ends of the piece are the same, there
does not have to be a feature sign change input for that piece.
ii. For each oo height input, if any, check the feature sign on either

side of the oo height input:

e If the feature signs on the two sides of the co height input are
opposite, the oo height input is a feature sign change input.
o [f the feature signs on the two sides of the co height input are the
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same, the oo height input is not a feature sign change input..
iii. Check the feature sign on the two sides of oo
e If the feature signs on the two sides of co are opposite, oo is a
feature sign change input.
o If the feature signs on the two sides of co are the same, co is not
a feature sign change input..

TEMO 5.2 Let f be the function whose offscreen graph is

Outputgy

+oo ‘ \
Offscreen
0
]
Height sign Screef|
Teft Of o heigh— Height sign rig
Height sign (— of %o pbighi
near— —> | 1| < Height sign
= ¥ ¥y e e
! it +  Input
>

—» Xoo-height +o0

To establish the existence of Height-sign change inputs

o Since the Height signs near —co and left of Zoo_height are opposite there is
an essential Height sign-change between —co and Zo_height-

o Since the Height signs right of Zoo height and near oo are the same there is
no essential Height sign-change between %o height and +oo.

TEMO 5.3 Let f be the function whose offscreen graph is

Outpuy

o -

0 ]

Screen

Offscreen

— \ /i\ N\ Input:

-0 Xoo-height +o0

To establish the existence of Slope-sign change inputs

o Since the Slope signs near —co and left of Zoo_height are opposite there is an
essential Slope sign-change between —0o and oo height-

o Since the Slope signs right of Zoo-height and near +oco are the same there is
no essential Slope sign-change between & height and +oo.

TEMO 5.4 Let f be the function whose offscreen graph is
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Outpugly

- |/

Screen

Offscreen

e ;
v Al U Inputs

. >
—o0 Xoo-height +o0

To establish the existence of Concavity-sign change inputs
e Since the Concavity signs near —oo and left of Zoo_height are opposite there
is an essential Concavity sign-change between —oco and oo height-
o Since the Concavity signs right of &oc_height and near —oo are the same there
is no essential Concavity sign-change between %o height and +oo.

2. However, things can get a bit more complicated.

TEMO 5.5 Let f be the function whose offscreen graph is

Outpt
+o0

Screen

e Input.
«

>
-0 +00

To establish the existence of Concavity-sign change inputs
e Since the concavity-sign at the transitions from —oco is U and the concavity-
sign at the transition to +oc0 is also U, one might be tempted to say that
there is no essential concavity sign-change input.
e However, attempting a smooth interpolation shows that things are a bit more
complicated than would at first appear.

Outp

i. Since the slope-signs at the transition from —oo is %
 and the slope-sign at the transition to +o00 is \
there has to be an essential Slope sign-change input
near which Concavity sign = (N, N) —e _—

Screen

Offscreen

~
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ii. Since the concavity-signs near —oo and left of ey
Zo-slope are opposite, there is an essential Concavity @iczen
sign-change input between —oco and Zo_siope- e
_ —_—
Screx
- vvin Input
X0-concavity \_— X0-slope s
- o 5 5 E Outputgy
iii. Since the concavity-signs right of Zo.slope and near -
400 are opposite, there is an essential Concavity iz
sign-change input between Zg_¢jope and +o0. J\
Scre
-~ nivv fout
T T A A ttconcmingn

3. That there is no essential feature sign-change input does not mean
that there could not actually be a non-essential feature sign-change input.

EXAMPLE 5.14.
Let f be the function  ® There is no essential Height sign-change input, no

whose offscreen graph essential Slope sign-change input, and no essential
is Concavity sign-change input.
e However, the actual bounded graph could very well
oupitk be:
+oo l oiu::
0 =
| 0
Screen Sero
oreeel Offscreen

—o0 _;\n —\f\\l \.\j;,‘ +\ul':u=rs —o0 —n AU AU /np=ui.

4 Essential Extreme-Height Inputs

An extreme-height input is an essential local extreme-height input
if the existence of the local extreme-height input is forced by the offscreen

graph in the sense that any smooth interpolation must have a local extreme-
height input.

essential local extreme-
height, input
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EXAMPLE 5.15.

Let f be a function
whose offscreen graph
is

Outputfy

+o0
Offscreen

\Z

!
8

+

8

EXAMPLE 5.16.

Let f be a function
whose offscreen graph
is

Output
Feo /\ Offscreen
eor
—0 / \
/ VAN

v
5

8Y3
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Then,

i. Since the Slope signs near —oco and +oo are opposite
there is an essential Slope sign-change between —oco
and +o0.

ii. Since the Height of Zsjope sign-change is Not infinite,
the slope near zsiope sign-change Must be 0

Output;
+o0

AL

Vi /N A 2

—o0 X ~Xmaximum output 400
iii. To.siope is @ local essential Maximum-Height input.

Then,

i. Since the Slope signs near —oo and near +oo are
opposite there is an essential Slope sign-change be-
tween —oo and +oo0.

ii. But since there is an oco-height input, the Height
near Tgjopesign—change 1S infinite and there is no essen-
tial local maximum height input.

5 Non-essential Features

While, as we have just seen, the offscreen graph may force the existence
of certain feature-sign changes in the onscreen graph, there are still many
other smooth interpolations of the offscreen graph that are not forced by

the onscreen graph.

EXAMPLE 5.17. The moon has an influence on what happens on earth—
for instance the tides—yet the phases of the moon do not seem to have an
influence on the growth of lettuce (see http://www.almanac.com/content/
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bump

farming-moon) or even on the mood of the math instructor. wiggle

We will say that a global feature is non-essentialif it is not forced by
the offscreen graph.

1. As we saw above, feature sign-change inputs can be non-essential.

EXAMPLE 5.18.

Let f be a function  Then,

whose graph is i. The two Height sign-change inputs left of 2o height
oupun are non-essential because if the 0-output level line were
h e higher, there would be no Height sign-change input.
For instance:

Output;
0 o0

Offscreen

Screen

—o0

Inputs
>
»

ii. The Height sign—chang:é:iribut right of Too height IS
essential because, no matter where the O-output level
line might be, the joining curve has to cross it.

2. There other non-essential features:

e A smooth function can have a bump in which the slope does not change
sign but the concavity changes sign twice.

EXAMPLE 5.19. The function whose graph is

Outpuy

Local Graph

+o0

has a bump.

e A smooth function can also have a wiggle, that is a pair of bumps in
opposite directions with the slope keeping the same sign throughout but
with three inputs where the concavity changes sign.


http://www.almanac.com/content/farming-moon
http://www.almanac.com/content/farming-moon
http://www.almanac.com/content/farming-moon
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max-min _fluctuation ] )
min-max, Auctuation EXAMPLE 5.20. The function whose graph is

+oo

Local Graph near +e

has a wiggle.

e A smooth function can also have a max-min fluctuation or a min-
max fluctuation that is a sort of “extreme wiggle” which consists of a
pair of extremum-heights inputs in opposite directions. In other words,
a fluctuation involves:

— two inputs where the slope changes sign
— two inputs where the concavity changes sign

EXAMPLE 5.21. The function whose graph is

Outpuig | al Graph near 4%
+oo

has a max-min fluctuation.

6 Essential Onscreen Graph

It should be realized that in each and everyone of the above EXAMPLES we
were only able to determine how many essential inputs

NOTE 5.1 Location of essential inputs Locating essential inputs is a
totally different question from finding how many essential inputs there
are. Locating essential inputs is usually a much more difficult question
which, except in a very few cases, we will not deal with in this text.

We will thus use the following
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DEFINITION 5.1 An essential onscreen graph is a simplest pos-
sible smooth interpolation of the offscreen graph, that is without any
nonessential feature-sign change inputs and without any nonessential

features.
EXAMPLE 5.22. Given the offscreen graph,
T:“ Oftscreen
Screen /
el / Input
= o
the following
TZ” Oftscreen fj:_’::' Offscreen O_:f;" Oftscreen
creen / Screen
X
Smooth moof
\, momzﬁ:tm \n(crpot\auorv L\?ﬁerpot\:mn
input - Input, -0 oput
aA. = 4o b_ - 4o C. « oo

are all smooth interpolations but only c. is an essential onscreen graph.

EXAMPLE 5.23. Given the offscreen graph,
/

Soreen |

the following

Outputs
+oo

Output Rul i Outpu

Offscreen

Offscreen 0 i el
H B H Input ] Ingut
Xoo-heig ol w-heigl ‘Ruler %-heigl
a. height oo b o Xoo-height oo C. = Xoo-height oo
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are all smooth interpolations but only a. is an essential onscreen graph.

1. The essential onscreen graph will be about the best we will be able
to get with the technology in this text and, in order to detect, locate and
investigate nonessential features such as bumps, hiccups and fluctuations,
one needs the stronger technology of the Differential Calculus

2. There are two ways essential onscreen graphs come up in the real
world:

e The essential onscreen graph is how we see the actual graph from “far-
away” inasmuch as nonessential features such as bumps, hiccups and
fluctuations are too small to be seen from faraway.

EXAMPLE 5.24. Given the global graph,

Output
LUt YR Ofscre
+o0

Input
let

—o +o0

here is what we see from further and further away:

Output Rul Output Rl oon Output Rule

oo Offscreen oo creen ool Ofscreen

e The essential onscreen graph is what we would get if the onscreen graph
were a wire being pulled out so as to straighten it.

EXAMPLE 5.25. Given the global graph,
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Outpu
PN oftscreen

Screen

Inputs

we can imagine the non-essential onscreen graph as a “wire” being pulled
by the offscreen graph so as to smooth it out into an essential bounded
graph.

Outputy Outputs

Output Rulej
Offscreen oo Offscreen \ +oo Offscreen
o 3 N
Q Q X
Screen
"wire"
S “wire"
Ny
Q/
—00 Input: —o0 Input. —00
> » p nput
Lol - > Ruler
- o0 —o oo o0 +oo
Outputs Offscreen
+oo
Screen
"wire"
- Input
>
>

+oo
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monomial function
coefficient
output-specifying code
exponent

power

Chapter 6

Regular Monomial Functions
- Local Analysis

Output At xg, 154 e Plot Point, 157 e Normalization, 158 e Thickening
The Plot, 160 e Output Near oo, 161 e Output Near 0, 165 e Graph Place
Near oo and Near 0, 169 e Local Graph Near co and Near 0, 174 o Local
Features Near oo and Near 0, 175 .

Monomial functions are functions that multiply or divide a given num-
ber, referred to as the coefficient, by a number of copies of the input.

1. More precisely,

DEFINITION 6.1 Monomial Functions are algebraic functions
whose global input-output rule is of the form

z s f(x) = coefficient g®Porent
LY ~—~—
input output output-specifying code
where:
» The coefficient can be any bounded number.

» The exponent in the power P is o signed counting num-

ber that specifies what the function is to do to the coefficient with
the copies of x:

e The size of the exponent specifies how many copies of x are to
be made. (If the exponent is 0, no copy is to be made and the
coefficient is to be left alone.)

e The sign of the exponent specifies whether the coefficient is to

153
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power function

regular monomial function be multiplied or to be divided by the copies of x:
exceptional monomial + means the coefficient is to be multiplied by the copies of z,
function

— means the coefficient is to be divided by the copies of z.

LANGUAGE 6.1 Power Functionsis the name that is normally used
for those monomial functions whose coefficient is +1 or —1 . Unfor-
tunately, the name power function is often used in place of monomial
function and, even more unfortunately, this was the case in the previous
editions of this text.

2. For reasons that will appear shortly we will distinguish:

e The regular monomial functions, to be discussed in this and the
next chapter, which are those monomial functions whose exponent is
any signed counting number other than 0 or +1.

from

e The exceptional monomial functions, to be discussed in chapter 8,

which are those monomial functions whose exponent is either (0 or +1 .

1 Output At xg

Let f be the regular monomial function specified by the global input-output

rule
z L flz) = az™"
~— ——
input output output-specifying code

where n is the number of copies used by f, and let xg be the specified input.
To get the output of the function f at the specified input zg, we use 77 on
?? which, for regular monomial functions, becomes:

PROCEDURE 6.1 To get the output at zy of a regular mono-
mial function f .

i. Declare that x is to be replaced by zg

x . f(zx) = azt"
T<—T0 T<—To Tr<—T0
which, once carried out, gives:
0 S, f(zo) = azot™

——
output-specifying code
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ii. Ezecute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the com-
putations to be performed according to the output-specifying code.
b. Perform the computations specified by the output-specifying
code and thus get the output f(zo);

e For positive exponents , the code specifies that the out-

put f(zg) is obtained by multiplying the coefficient a by n copies of
the specified input z:

f(l)o):a'l‘o- )
—_———
n copies of zg

e For negative exponents , the code specifies that the
output f(xg) is obtained by dividing the coefficient a by the n copies
of the specified input z:

f(zo) =

To: ... "X
| S ——
n copies of zg

DEMO 6.1 Let FLIP be the function specified by the global input-output

rule
FLIP , FLIP(x) = (+527.31)a 1

To get the output of the function FLIP at —3:

i. We declare that z is to be replaced by —3
x _EHP L pPLIP(2) = (+527.31)2 1!

T——3 r——3 T——3
which, once the replacement has been carried out, gives:

—8 —" FLIP(=3) = (+527.31) - (=8)*"!

output-specifying code
ii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since we have a positive expo-
nent, the code specifies that the output FLIP(—3) is obtained by multiplying

the coefficient +527.31 by 11 copies of the specified input —3:

FLIP(—3) = (+527.31)% (=3) - ... - (=3)
R —
11 copies of —3
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b. We perform the computations specified by the code. Dealing separately
with the 'signs and the - we have

= (527.31) % () oo () - 13 3
—_———
11 copies of — E

and since
e by theorem 19.2 on page 365, an odd number of copies of — multiply to —

and we get
= (527.31)1= (=) - (W 14T
= —93411384.57
The input-output pair is (—3, —93411 384.57)

DEMO 6.2 Let FLOP be the function specified by the global input-output

rule
O L FLOP(z) = (+3522.38)2 ¢

To get the output of the function FLOP at —3:

i. We declare that z is to be replaced by —3

z _ELOP  FLOP(z) = (+3522.38)z°

-3 T+—3 T+—3
which, once carried out, gives:

3 IO, PLOP(-8) = (+352238) - (=3)F°

output-specifying code
ii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since we have a negative expo-
nent, the code specifies that the output FLOP(—3) is obtained by dividing

the coefficient +3 522.38 by 6 copies of the specified input —3:

FLOP(—3) = meed3522.38
(=3)- ... - (-3)
[ ——
6 copies of —3
b. We perform the computations specified by the code. Dealing separately
with the signs and the - we have

_ +3522.38
(=) ()
—_——

even number of copies of —
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and since,
e by theorem 19.2 on page 365, an even number of copies of — multiply to +
and we get
_ +3522.38
(+) - (729)
= 44.8317 + [...]

The input-output pair is (—3,4+4.8317 + [...])

2 Plot Point

Let f be the regular monomial function specified by the global input-output
rule

z Ly flz) = az™"
~—~ ——
input output-specifying code

where n is the number of copies used by f, and let g be the specified input.
To plot the input-output pair for the specified input zg, we use 7?7 on 77
which, in the case of regular monomial functions, becomes

PROCEDURE 6.2 To get the plot point for a specified bounded
input

1. To get the output at the specified input using ?? on 7?7 to get the
input-output pair,
2. Locate the plot point with 77 on ?77.

DEMO 6.3 Let FLIP be the function specified by the global input-output
rule

o P PLIP(z) = (+527.31)z !
To plot the input-output pair for the input —3:
1. We get the output of the function FLIP at —3 . We found in EXAMPLE
5.1 above that FLIP(—3) = —93411384.57



features, of input-output
rule

Coefficient Sign
Exponent Sign
Exponent Parity
even

odd
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2. Thus, the input-output pair for the Oitﬁy\
plot point of FFLIP at —3 is
(—3,—93411384.57) and the plot
point is:

-93411384.57

Offscreen

Screen

(-3,-93411384.57 )

Plot
point for

FLIP (-3)

Input:
~,

—00

e
,3 “+o0

DEMO 6.4 Let FLOP be the function specified by the global input-output

rule
FLOP

To plot the input-output pair for the input —3 :

FLOP(z) = (+3522.38)2 ¢

1. We get the output of the function FLOP at —3 . We found in Demo 6.2
on page 156 that FLOP(—3) = +4.8317 + [...]

2. Thus, the input-output pair for the Oitf:y\
graph point of FLOP at —3 is Ofscreen
(—3,4+4.8317 + [...]) and the plot Screen
int is:
pont 15 AT (-3, 48317+ [..])
o u

3 Normalization

—00

Plot
point for
FLIP (-3)

Input:
S

>
_3 400

Since in this text we will take a qualitative viewpoint, all the features of
the global input-output rule that specifies a regular monomial function will

not be equally important for us.

As we will see, the three features that will be important for us are:
e Coefficient Sign which can be + or —.
¢ Exponent Sign which can be + or —,
e Exponent Parity which can be even or odd depending on whether the
size of the exponent, that is the number of copies, is even or odd.
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DEMO 6.5 The function specified by the global input-output rule

BLIP , BLIP(z) = (—160.42)z 7"

is a monomial function whose global input-output rule has the following features

e Coefficient Sign BLIP = —.
e Exponent Sign BLIP = +,
e Exponent Parity BLIP = odd,

159

But, because, in this text, we are only interested in qualitative analysis,

we will not pay any attention to the following two features:
e Coefficient Size (other than the coefficient having to be bounded)

e Exponent Size (other than the size of the exponent being even or odd)

NOTE 6.1

much.

A deeper analysis would require taking into account the actual number
of copies but even then the size of the coefficient would still not matter

Accordingly, in order to focus on the important features of regular mono-
mial functions, it will often be helpful to normalize the global input-output

rule of a regular monomial function as follows:

PROCEDURE 6.3 Normalize the global I-O rule of a regular

monomial function.

i. Replace the Coefficient Size by the word bounded,
ii. Replace the Exponent Size by the Fxponent Parity

TEMO 6.1 Let BLIP be the function specified by the global input-output

rule

o —2HE L BLIP(2) = (— 160.42 )zt 7

To normalize BLIP.
i. We replace the Coefficient Size, namely 160.42 , by the word bounded
ii. We replace the Exponent Size, namely 7 , by the word odd

The normalized global input-output rule of BLIP is thus

g PP BLIP(x) = (— bounded ) - x °%

TEMO 6.2 Let BLOP be the function specified by the global input-output
rule

z 2O, BLOP(z) = (— 365.28 )2~ ©

To normalize BLOP,

Coefficient Size
Exponent Size
normalize
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code i. We replace the Coefficient Size, namely 365.28, by the word bounded
bi-level sign ii. We replace the Exponent Size, namely 6, by the word even
+ The normalized global input-output rule of BLOP is thus
:F
BLOP

& ———— BLOP(z) = (— bounded ) - x~ “*°"

4 Thickening The Plot

As mentioned in on , instead of using single inputs to get single plot points,
we will “thicken the plot” that is we will use neighborhoods of given inputs
to get graph places. But to use neighborhoods with global input-output rules,
we will first have to introduce code to be able to declare by what to replace
x. And, since this at the very core of what we will be doing in the rest of
this text, we want to proceed with the utmost caution.

Since we are dealing here with reqular monomial functions we will only
be interested in inputs near oo and/or inputs near 0 and so here all we will
need is the sign-size.

In order to declare by what we want to replace x, we will use the following

code:
‘ Near ‘ Side Code ‘
Infinity Left 0 ---- —_— w positive +oo | +large
Right o ----- e 0 negative —oo | —large
Zero Left O -snes —=0 negative 0~ —small
Right 0m— ----- o positive 0 +small

For the input-output pairs on one side, we will basically use on but declare
that x is to be replaced using the above code for the given input.

For the input-output pairs of both sides, we will use the bi-level signs
4+ and F as follows:

Instead of We can just write and the I-O pair
+ —— 4+ and — —— + + — + (£,4)
+ —— — and — —— — + — — (£, =)
+ —— + and — —— — + — + (£, %)
+ ——— — and — ——— + + —— F (£, F)
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5 Output Near oo

1. When we want to thicken only one side of co, we proceed as follows:

PROCEDURE 6.4 To get the input-output pairs on one side
of oo.

1. Normalize the global input-input rule using 7?7 on 77
2. Declare that x is to be replaced by +large or —large
3. Ezecute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the com-
putations to be performed according to the output-specifying code.
b. Perform the computations specified by the code using theo-
rem 19.2 on page 365 and theorem 1.2 on page 38 or theorem 1.3 on
page 39

DEMO 6.6 Let NADFE be the function specified by the global input-output

rule

NADE , NADE(z) = (—83.91)z™"
To get the input-output pairs near +oo for NADE :
i. We normalize NADE:

_NADE , NADE(z) = (—bounded) z~°%

ii. We declare that x is to be replaced by +large

. _NADE | NADE(z) = (—bounded)x %

z<—+large z++large z<—+large

which, once carried out, gives:

+large _NADE NADE(+large) = (—bounded)(+large)~°"

output-specifying code
iii. We execute the output-specifying code that is:

a. We decode the output-specifying code: since the exponent is negative ,
we get the output NADE(+large) by dividing the coefficient —bounded by
an odd number of copies of the specified input +large:

—bounded

(+large) - ... - (+large)

odd number of copies of +large
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b. We perform the computations specified by the code. Dealing separately
with the 'signs and the - we have

—bounded

odd number of copies of +

and since,
e by theorem 19.2 on page 365, any number of copies of + multiply to +,
e by the Definition of large, any number of copies of large multiply to large
_ —bounded
o
and by theorem 19.2 on page 365 and theorem 1.3 on page 39 we get

= —small

iv. The input-output pairs are (+large, —small)

DEMO 6.7 Let RADE be the function specified by the global input-output
rule

x —2PE  RADE(z) = (+45.67)z 4

To get the input-output pairs near —oo for RADE:
i. We normalize RADE:

r —PADE | RADE(z) = (+bounded) x~¢7¢"

ii. We declare that z is to be replaced by —large
x _RADE , RADE(z) = (+bounded)x "
z<——large z—large z<——large

which, once carried out, gives:

—large 2P, RADE(~large) = (+bounded)(~large) ="

output-specifying code
iii. We execute the output-specifying code that is:

a. We decode the output-specifying code: since the exponent is negative ,
we get the output RADE(—large) by dividing the coefficient +bounded by
an even number of copies of the specified input —large:

+bounded

(=large)- ... - (=large)

even number of copies of —large

b. We perform the computations specified by the code:
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Dealing separately with the 'signs and the - we have
+bounded

even number of copies of —

and since,
e by the Sign Multiplication Rule, any even number of copies of — multiply
to +
e by the Definition of large, any number of copies of large multiply to arge

_ tbounded
]
and by the Sign Division Rule and the Size Division Theorem

= +small

iv. The input-output pairs are (—large, +small)

2. When we want to thicken both sides of co, we declare that x is to be
replaced by =+large and keep track of the signs as we perform the compu-
tations specified by the output-specifying code.

DEMO 6.8 Let DADFE be the function specified by the global input-output

rule
o —2APE , DADE(z) = (—83.91)2t®
To get the input-output pairs near oo for DADE:

i. We normalize DADE:

g —2APE DADE(z) = (—bounded) z°%

ii. We declare that x is to be replaced by =large

x _DpADE , DADE(x) = (—bounded)x o4

z<—=xlarge z*large z<—=xlarge
which, once carried out, gives:

+large _DADE , DADE(+large) = (—bounded)(£large) ™™

output-specifying code
iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,
we get that the output DADE(+large) is obtained by | multiplying the coeffi-

cient —bounded by an odd number of copies of the specified input +large:

= (—bounded) + (xlarge) - ... - (Elarge)

odd number of copies of *large
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b. We perform the computations specified by the code. Dealing separately
with the 'signs and the - we have

= (—bounded) - (B): ... ()

odd number of copies of +

and since,
e by the Sign Multiplication Rule, an odd number of copies of + multiply
to + and an odd number of copies of — multiply to —
e by the Definition of large, any number of copies of large multiply to large

= (—bounded) |+ %- -

and by the Sign Multiplication Rule and the Size Multiplication Theorem
= Flarge

iv. The input-output pairs are (£large, Flarge)

DEMO 6.9 Let PADE be the function specified by the global input-output
rule

x —LAPE  PADE(z) = (—65.18)2 ™6
To get the input-output pairs near oo for PADE

i. We normalize PADE.

o —LADE PADE(z) = (—bounded) xcv"

ii. We declare that x is to be replaced by +large

x _PADE , PADE(x) = (—bounded)x V"

z<—=+large z<*large z—=xlarge
which, once carried out, gives:

tlarge —22PE , PADE(%large)) = (—bounded)(Llarge) "

output-specifying code
iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,
we get the output PADE(+large) by multiplying the coefficient —bounded

by an even number of copies of the specified input *large:

= (—bounded) - (£large) - ... - (£large)

even number of copies of £large
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b. We perform the computations specified by the code. Dealing separately
with the 'signs and the - we have

= (—bounded) |- = =
—

even number of copies of

and since,
e by the Sign Multiplication Rule, an even number of copies of + multiply
to + and an even number of copies of — multiply to +
e by the Definition of large, any number of copies of large multiply to large

= (—bounded) | +.-

and by the Sign Division Rule and the Size Division Theorem
= —large

iv. The input-output pairs are (£large, —large)

6 Output Near 0

1. When we want to thicken only one side of 0, we proceed as follows:

PROCEDURE 6.5 To get the input-output pairs on one side
of 0.

1. Normalize the global input-input rule using 7?7 on 77
2. Declare that z is to be replaced by -+small or —small
3. FEzxecute the output-specifying code that is:
a. Decode the output-specifying code, that is write out the com-
putations to be performed according to the output-specifying code.
b. Perform the computations specified by the code using theo-
rem 19.2 on page 365 and theorem 1.2 on page 38 or theorem 1.3 on
page 39

DEMO 6.10 Let M ADE be the function specified by the global input-output
rule

MADE , MADE(z) = (+27.61)2+®

To get the input-output pairs near 0" for MADE:

i. We normalize MADE"

g —MADE | MADE(z) = (+bounded) z°%
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ii. We declare that x is to be replaced by +small
x _MADE , MADE(z) = (+bounded)z
r—+small x—+small r<—+small

which, once carried out, gives:

+small —APE MADE(+small) = (—bounded)(+small)***

output-specifying code
iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is positive ,
we get that the output M ADE(+small) is obtained by multiplying the coef-
ficient +bounded by an odd number of copies of the specified input +small:

= (+bounded) + (+small) - ... - (+small)

odd number of copies of +small

b. We perform the computations specified by the code. Dealing separately
with the signs and the [sizes |, we have

= (+bounded) = | () ... - (+) [ {small)- .. < (small)

-

-~

odd number of copies of + odd number of copies of small

and since,
e by the Sign Multiplication Rule, any number of copies of + multiply to +
e by the Definition of small, any number of copies of small multiply to

small

= (+bounded) |- + - small
and by the Sign Multiplication Rule and the Size Multiplication Theorem

= +small

iv. The input-output pairs are (+small, —small)

DEMO 6.11 Let WADE be the function specified by the global input-output
rule

WADE , WADE(z) = (—28.34)z™3

To get the output of WADE near 0F

i. We normalize WADE:
WADE

x ————— WADE(x) = (—bounded) x~""
ii. We declare that z is to be replaced by —+small

x _WADE , WADE(x) = (—bounded)x ™"

x—+small z—+small x+—+small
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which, once carried out, gives:

+small —" P WADE(+small) = (~bounded)(+small) ="

output-specifying code
iii. We execute the output-specifying code that is:

a. We decode the output-specifying code: since the exponent is negative ,
we get the output WADE(+small) by dividing the coefficient —bounded by

an even number of copies of the specified input +small:

B —bounded
(+small) - ... - (+small)
even number of copies of +small
iv. b. We perform the computations specified by the code. Dealing sepa-
rately with the ' signs and the - we have
_ —bounded
() ... - (+)
—_——

even number of copies of +

and since,
e by the Sign Multiplication Rule, any number of copies of + multiply to +
e by the Definition of small, any number of copies of small multiply to
small
_ _—bounded

ol
and by the Sign Division Rule and the Size Division Theorem

= —large

iv. The input-output pairs are (+small, —large)

2. When we want to thicken both sides, we will declare that z is to
be replaced by “£small and keep track of the signs as we perform the
computations specified by the output-specifying code.

DEMO 6.12 Let JADE be the function specified by the global input-output
rule

x —24PE . JADE(z) = (-65.71)z~°

To get the output of JADE near 0,

i. We normalize JADE:

o APE JADE(x) = (—bounded) x~°%
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ii. We declare that z is to be replaced by +small
x _JADE , JADE(x) = (—bounded)z %

z+Ztsmall z+tsmall z—tsmall
which, once carried out, gives:

+small —L22E JADE(+small) = (—bounded)(xsmall) ="

output-specifying code
iii. We execute the output-specifying code that is:

a. We decode the output-specifying code: since the exponent is negative ,
we get the output JADE(+£small) by ' dividing the coefficient —bounded by
an odd number of copies of the specified input £small:

. —bounded
(£small) - ... - (£small)

odd number of copies of *small

b. We perform the computations specified by the code. Dealing separately
with the signs and the - we have

—bounded

odd number of copies of +

and since,
e by the Sign Multiplication Rule, an odd number of copies of 4+ multiply
to + and an odd number of copies of — multiply to —
e by the Definition of small, any number of copies of small multiply to
small
— _—bounded
+ - small
and by the Sign Division Rule and the Size Division Theorem
= Flarge

iv. The input-output pairs are (£small, Flarge)

DEMO 6.13 Let FADE be the function specified by the global input-output
rule

z —APE , PADE(z) = (—65.18)2™¢

To get the input-output pairs near 0 for FADE:

i. We normalize FADE.

FADE FADE(z) = (—bounded) xcv"
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ii. We declare that x is to be replaced by +small
x _FADE , FADE(x) = (—bounded)z "

z+ZEsmall x4—tsmall r<Esmall
which, once carried out, gives:

tsmall —2PE FADE(+small)) = (—bounded)(£small)t"*"

output-specifying code
iii. We execute the output-specifying code that is:
a. We decode the output-specifying code: since the exponent is ' positive ,
we get the output FADE(—small) by multiplying the coefficient —bounded

by an even number of copies of the specified input +small:

= (—bounded) - (£small) - ... - (£small)

even number of copies of +small

b. We perform the computations specified by the code. Dealing separately
with the 'signs and the - we have

= (—bounded) |- = e
e

even number of copies of £+

and since,
e by the Sign Multiplication Rule, an even number of copies of + multiply
to + and an even number of copies of — multiply to +
e by the Definition of small, any number of copies of small multiply to

small
= (—bounded) [+ + - Small

and by the Sign Multiplication Rule and the Size Multiplication Theorem

= —small

iv. The input-output pairs are (£small, —small)

7 Graph Place Near oo and Near 0

Once we have the input-output pairs near co and near 0, we get the graph
places as in 7?7 7?7 on ?7?7. Here again,

i. In the first four demos, Demo 6.14 on page 170, Demo 6.15 on page 170,
Demo 6.16 on page 171, Demo 6.17 on page 171, we will deal with only one
side or the other.

ii. In the next four demos, Demo 6.18 on page 172, Demo 6.19 on
page 172, Demo 6.20 on page 173, Demo 6.21 on page 173, we will deal
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with both sides at the same time.

PROCEDURE 6.6 Locate the graph place near ~c or 0

1. Get the input-output pairs using ?? 7?7 on 7?7 or 7?7 77 on ?77.
2. Locate the graph place using 7?7 77 on 77.

DEMO 6.14 Let NADE be the function specified by the global input-output

rule
z —APE  NADE(z) = (—83.91)z~°

To locate the graph place of NADE near +o0 :

1. We get that the input-output pairs for NADE near +oo are
(+large,—small) (See Demo 6.6 on page 161)

Outputs
2. The graph place of NADE near 400 oo
then iS: Offscreen
Screen
0 —small ‘ I
Graph Placg
near +oo
R =
Offscreen (+large, —small)
- i In;iut:
® N +large +'°°

DEMO 6.15 Let M ADE be the function specified by the global input-output

rule
o —MAPE  MADE(z) = (+27.61)2+®

To locate the graph place of MADE near 07 :

1. We get that the input-output pairs for MADE near 0T are
[+small,4+small](See Demo 6.10 on page 165)
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Outputs
+
2. The graph place of MADE near 0 Foo P
then is:
Screen
0 +small
Graph Place
near 0%
(tsmall, +small)
&
S
—% &: Inputs
—o0 +o0

DEMO 6.16 Let RADE be the function specified by the global input-output

rule
g —FAPE , RADE(z) = (+45.67)z 4

To locate the graph place of RADE near —oo :

1. We get that the input-output pairs for RADE near —oo are
[—large,+small](See Demo 6.7 on page 162)

2. The graph place near —oo then is: o,
Graph Place
near —co
[-large, +small]
Screen
+smal ]
Offscreen
e Inputs

\

—oo —large +00

DEMO 6.17 Let WADE be the function specified by the global input-output

rule
o ALY WADE(z) = (—28.34)z3

To locate the graph place of WADE near 07 :

1. We get that the input-output pairs for WADE near 0t are
[+small,—large](See Demo 6.17 on page 171)
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A outputs
. +00
2. The graph place near 0T then is:
Offscreen
Screen
Graph Place
A near 0%
[+small, —large]
—large ’
—o Input
>
—00 +small +00

DEmMO 6.18

rule
PAPE . PADE(z) = (—65.18)z ™

To locate the graph place of PADE near oo .

Let PADE be the function specified by the global input-output

1. We get that the input-output pairs for PADE near oo are
[Elarge,—large](See Demo 6.9 on page 164)
Outputs
2. The graph place of PADE near oo then
iS: Offscreen
Screen
Graph Place Graph Place
near —oco near +oo
tlarge, —large] [+large, large]J
—large ‘ ‘
—% 1 7 Inﬁut:
—oo —large 7 +large +:°
DEMO 6.19 Let JADE be the function specified by the global input-output
rule

JAPE  JADE(z) = (—65.71)z™"

To locate the graph place of JADE near 0 :

1. We get that the input-output pairs for JADE near 0 are [£small,Flarge]

(See Demo 6.12 on page 167)
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2. The graph place of JADE near 0 then +juge
is:

A
+o0

N

\ Outputs

D

Graph Place
near 0~
[=small, +large]

173

Graph Place
near 0%
[+small, —large]

Scree

—la rge Offscreen
- Input:
-
\ 7 g
—00 —smalli+small 400
0

DEMO 6.20 Let DADFE be the function specified by the global input-output

rule
2222 DADE(z) = (—83.91)z+°

To locate the graph place of DADE near oo :

1. We get that the input-output pairs for DADE near oo are [tlarge,Flarge]
(See Demo 6.8 on page 163)

A Outputs
2. The graph place of DADE near oo then 4«
s: Offscreen
- +large
N
Graph Place Sereen [t+large, —large]
near —ee Graph Place
[-large, +large] near +oo/\
Y.
—large
- Input.

L
N Harge oo

L

—c0 —large

DEMO 6.21 Let FADE be the function specified by the global input-output

rule
FAPE | PADE(z) = (—65.18) ™

To locate the graph place of FADE near 0~ .

1. We get that the input-output pairs for FADE near 0 are [small,—small]
(See Demo 6.13 on page 168)
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Outputs

2. The graph place of FADE near 0 then $oo Offsereen
is:

shape
forced

Screen

—small \

Graph Place Graph Place
near 0~ near 0

[=small, —small] [+small, —small]

—00 Input:

- —small” +small Foo

8 Local Graph Near oo and Near 0

Regular monomial functions are very nice in that the shapes of the local
graphs near oo and near 0 are forced by the graph place. In other words,
once we know the graph place, there is only one way we can draw the local

graph because:

i. The smaller or the larger the input is, the smaller or the larger the
output will be,

ii. The local graph cannot escape from the place.

DEMO 6.22 Given a monomial function for which the place of a local graph
is [+large,+small], we get the shape of the local graph as follows

Outputs
i. The slope is forced by the fact that Foo
the larger the input is, [+large, +small]
the smaller the output will be. Soreen /1 %3
ii. The concavity is forced by the fact o small N\VE %
that the local graph cannot cross the m fe‘: &

0-output level line.

Offscreen

—% Inputs
%

—o0 +large 4oo
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DEMO 6.23 Given a monomial function for which the place of a local graph
is [—small,—large], we get the shape of the local graph as follows

Outputs A
i. The slope is forced by the fact that oo P
the smaller the input is,
the larger the output will be. Screerl
ii. The concavity is forced by the fact The smaller
that the local graph cannot cross the the input
0-input level line. ~ -
[=small, —large] 33
—large g Y
—00 E.(‘.j‘l
InpuLs
—00 —small 0 too

9 Local Features Near co and Near 0

1. Given a regular monomial function being specified by a global input-
output rule, to get the Height sign near co or near 0, we need only compute
the sign of the outputs for nearby inputs with the global input-output rule.

DEMO 6.24 Let JOE be the function specified by the global input-output
rule
x —22%, JOE(z) = (—65.18)x ™

To get the Height sign of JOE near 07
We ignore the size and just look at the sign:

I
\
~—
—~
+
~—
+
(=]

+ 29F , JOE(+)

and

So, Height sign JOE near 0 is (—, —)

2. Given a regular monomial function being specified by a global input-
output rule, to get the Slope sign or the Concavity sign near oo or near 0,
we need the local graph near oo or near 0.
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DEMO 6.25 Let JILL be the function specified by the global input-output

rule

JIEE | JILL(%) = (432.06)(%) "
To get the Slope sign of JILL near 0
We need the local graph of JILL near 0.

i. We get the output for JILL near ii. The local graph of JILL near 0 is
0 AOutputs
+00 '
+small —EE2 JILL(+small) : orsereen
= (+bounded)(£small) v :
= (+bounded) ()" (small)* smair e e sres Nt i
= (+bounded)(+) - (small) 0 :
= +small : Sereen
0 \i/
iii. Slope sign JILL near 0 = (\, /) — ; s

—small +small

DEMO 6.26 Let JIM be the function specified by the global input-output
rule
o 2 JIM(z) = (—72.49)27"
To get the Concavity sign of JIM near co
We need the local graph of JIM near co.
i. We get the output for JIM near coii. The local graph of JIM near 0 is

’ AOutputs
+large _JIM JIM (tlarge) oo offscroen
= (—bounded)(£large) ~°%
B —bounded
B +small
(£large)...(£large) 7;””:5”035-“{_._._._._._._._.;u
odd number of copies
Screen
_ —bounded
~ +large
= —bounded - small el vV o
= AN

= Fsmall 7?2rge +la-)~:g0(e)

iii. Concavity sign JIM near co = (N, U)
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Regular Monomial Functions
- Global Analysis

Types of Global Input-Output Rules, 177 e Output Sign, 178 e Output
Qualitative Size, 184 e Reciprocity, 187 e Global Graphing, 193 e Types of
Global Graphs, 198 .

The GLOBAL ANALYSIS of regular monomial functions is very systematic
because the global input-output rule is very simple.

1 Types of Global Input-Output Rules

1. From the point of view of their global input-output rule, there are
eight types of regular monomial functions:

‘ Coefficient Sign ‘ Ezponent Sign ‘ Ezponent Parity ‘ Output-specifying code

N even (+bounded) xteven

n odd (+bounded) 2+ %
even (+bounded) x~ €ven

a odd (+bounded) = °%

even (—bounded) x+ ven

+ odd (—bounded) x+°%

- even (—bounded) x~ €ve"
B odd (—bounded) z~ °%

177
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2. There are two kinds of regular monomial functions which come up so
often that they have special names:

DEFINITION 7.1 Square Functions are monomial functions

ARE
with exponent 42, that is functions specified by « SQU—R>

SQUARE(z) = axt?. (Where Sign a can be either + or —.)

EXAMPLE 7.1. The function specified by x SQUARE SQUARE(x) =

—41.87x12 is a square function.

DEFINITION 7.2 Cube Functions are monomial functions with
erxponent +3 , that is functions specified by x CUBE, CUBE(z) =

azt3. (Where Sign a can be either + or —.)

EXAMPLE 7.2. The function specified by « CUBE, CUBE(z) =

+27.61x13 is a cube function.

2  QOutput Sign

Since Fzponent Sign specifies only whether the coefficient is to be multiplied
or divided by the copies of the input and since theorem 19.2 on page 365 says
that signs are multiplied and divided the same way, Exponent Sign cannot
have any effect on Qutput Sign.
1. More precisely, since
output = coefficient multiplied /divided power
we have
Output Sign = Coefficient Sign multiplied/divided Power Sign
so that only Coefficient Sign and Input Sign can possibly have an effect on
Output Sign. But then:

e If Exponent Parity = even, then as a consequence of theorem 19.2 on
page 365, Power Sign = + both when Input Sign = + and when Input
Sign = —

and therefore, when Exponent Parity = even

> Output Sign = Coefficient Sign both when Input Sign = + and when
Input Sign = —.



2. Output Sign 179

o If Exponent Parity = odd, then as a consequence of theorem 19.2 on

page 365,
> Power Sign = + when Input Sign = +,
> Power Sign= — when Input Sign = —,

and therefore, when Exponent Parity = odd

> QOutput Sign = Coefficient Sign when Input Sign = +,
> Qutput Sign = Opposite Coefficient Sign when Input Sign = —,

EXAMPLE 7.3. Given the function specified by the global input-output

rule
KIP

© —"— KIP(x) = (+82.33) - 2"
using theorem 19.2 on page 365, we have

+
KIP -
+ —— KIP(+) = —

—_——
even number of copies of +

o+
W

=

EXAMPLE 7.4. G iven the function specified by the global input-output rule

z —EAY L KAP(z) = (—73.93) - 2!

using theorem 19.2 on page 365, we have

4 B KAP(H) =—F () ... (4
| ——
odd number of copies of +
=— [+
EXAMPLE 7.5. Given the function specified by the global input-output

rule
v A KAT(z) = (—25.25) - 2"
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using theorem 19.2 on page 365, we have

AT S KAT(—) =— 1 (=) .. (2)
| ——

odd number of copies of —

EXAMPLE 7.6. Given the function specified by the global input-output

rule

o 2 KIT(2) = (+44.06) - 271

using theorem 19.2 on page 365, we have

~ KT KIT(-) = _‘+‘_
—_———
even number of copies of —
+
Tt
=+

We therefore have the following which summarizes the results of the above
investigation.

THEOREM 7.1 Output Sign (For Regular Monomial Functions.)
e If Input Sign = +,
Output Sign = Coefficient Sign.

e If Input Sign = —,

Output Sign depends on Exponent Parity:

> If Exponent Parity = even,

Output Sign = Coefficient Sign,
> If Exponent Parity = odd,
Output Sign =Opposite Coefficient Sign.

2. Then, for

PROCEDURE 7.1 To get the Output Sign for a regular mono-
mial function

Use theorem 7.1 on page 180.
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DEMO 7.1 Given the function specified by the global input-output rule horizontal flip
o L KIP(z) = (+82.33) - 274

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ P KIP(4) =+
— B2 KIP(-) =+
DEMO 7.2 Given the function specified by the global input-output rule
542 L KAP(z) = (-73.93) - o1

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ EAP L KAP(+) = —

- AP RAP(-) =+

DEMO 7.3 Given the function specified by the global input-output rule
o AT KAT(2) = (—25.25) - a7

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ EAT L KAT(+) = —

— AT KAT(-) = +

DEMO 7.4 Given the function specified by the global input-output rule
o KIT(x) = (+44.06) - 24

get the Output Sign
Using theorem 7.1 on page 180 we get immediately

+ BT KIT(+) = +
+

- KT KIT(-)

3. In order to graph monomial functions more efficiently, we need to
invest a little bit on a couple of graphic maneuvers:
a. If we do a horizontal flip on a first plot point we get a second plot point



vertical flip
diagonal flip
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and

e The input of the second plot point will be the opposite of the input of
the first plot point

e The output of the second plot point will be the same as the output of
the first plot point

EXAMPLE 7.7. If we do a horizontal flip on a the plot point (+2, —48)
we will get a second plot point and:
+OOAOutputs e the input of the second plot point
will be —2
Offscreen e the output of the second plot point
Screen will be —48

4B |- "‘EME?

Inputs
>

b. If we follow the horizontal flip on the first plot point by a vertical flip
on the second plot point, we will get a third plot point and:

e the input of the third plot point will be the same as the input of the
second plot point, that is the opposite of the input of the first plot point

e the output of the third plot point will be the opposite of the output of
the second plot point, that is the opposite of the output of the first plot
point

In other words, we can get the third plot point by a diagonal flip on the
first plot point.

EXAMPLE 7.8. If we do a horizontal flip on the plot point (+2,—48) we
get a second plot point and if we follow by a vertical flip on the second plot
point, we get a third plot point and:
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opposite input
+OOAOutputs e the input of the second plot point will be —2
e the output of the second plot point will be —40
Offscreen and then
e the input of the third plot point will be —2

F4() e ° Screen
e the output of the third plot point will be 440

In other words, both the input and the output of

the third plot point are opposite of the input and

output of the first plot point and so to get the third

plot point directly from the first plot point we can
B just use a diagonal flip instead of a horizontal flip
nputs

f | p followed by a vertical flip.
—00 -2 0o +2

40 :

4. So a consequence of theorem 7.1 on page 180 is that once we have the
plot point for an input, we can get the plot point for the opposite input,
that is for the input with the same size and opposite sign with just one flip:

THEOREM 7.2 Symmetry (For Regular Monomial Functions.)
Given the plot point for an input, we get the plot point for the opposite
input with:

e A horizontal-flip if Exponent Parity = even,

e A diagonal-flip if Exponent Parity = odd.

EXAMPLE 7.9. Given the function specified by the global input-ouput rule

z AT KAT(z) = (-3) - 2™

a. For instance AoOutouts
+00

42 KAT, KAT(+2)=-3e+2e 420 +20+2 Offscreen

= —48 Screen

and

—2 BAT, KAT(~2) = —3e—2e-20-20-2 _yg| ... o €z .

— 48 | |

b. We see that we can get the plot point

for input —2 by a horizontal flip of the plot
point for input +2:

Inputs
>
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EXAMPLE 7.10. Given the function specified by the global input-ouput
rule

2T KAT(2) = (+5) - 23

a. For instance AOutputs
+00
KAT
+2 — KAT(+2) =45e+2e+2e0+2 Offscreen
— +40 F4Q) e ° Screen
and ,
o KA KAT(—2) = +5e—20-20-2 4

= —40
b. We see that we can get the plot point
for input —2 by a diagonal flip of the plot point

for input +2: f i
o0 2 0 w2

Inputs
>

3 Output Qualitative Size

LANGUAGE 7.1 Size. When it is clear from the context that we refer to
Qualitative Size, as in this section, we will just say Size as in, for instance,
“Input Size = small” instead of “Input Qualitative Size = small”.

Since Ezponent Sign specifies if the coefficient is to be multiplied or
divided by the copies of the input and since, depending on Ezponent Sign, we
use either theorem 1.2 or theorem 1.3, Qutput Size will depend on Exponent
Sign.

1. More precisely, Output Size has to depend on both Input Size and
Ezponent Sign:

e If Exponent Sign is +, the coefficient is to be multiplied by copies of the

input then, as a consequence of theorem 1.2 on page 38:

> If Input Size = large, Output Size = bounded X large = large
> If Input Size = small, Output Size = bounded x small = small
e If Exponent Sign = —, then the coefficient is to be divided by copies of
the input so that, as a consequence of theorem 1.3 on page 39:
> If Input Size = large, Output Size = bounded + large = small
> If Input Size = small, Output Size = bounded <+ small = large
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EXAMPLE 7.11. Given the function specified by the global input-output

rule

o 2 KIP(x) = (+82.33) - 27!

Using theorem 1.3, we have

bounded
small -2, KIP(small) =

small - ... - small
bounded
- small
= large
EXAMPLE 7.12. Given the function specified by the global input-output

rule
x 24P KAP(z) = (—73.93) - 2!
Using theorem 1.2, we have
large _KAP K AP(large) = bounded |- large- ... -large
= bounded |- large

= large

EXAMPLE 7.13. Given the function specified by the global input-output

rule

x AL KAT(z) = (—25.25) - "

Using theorem 1.2, we have
KAT

small ——— K AT (small) = bounded = small- ... - small
= bounded - small
= small
EXAMPLE 7.14. Given the function specified by the global input-output

rule

o L KIT(2) = (+44.06) - 27
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Using theorem 1.3, we have
KIT bounded

large ———— KIT(large) = T ——
bounded

large

= small

We therefore have the following which summarizes the results of the above

investigations

THEOREM 7.3 Output Size (For Regular Monomial Functions)

o If Exponent Sign = +,
Output Size = Input Size.
o If Exponent Sign = —,
Output Size = Reciprocal Input Size.
(For “Reciprocal” see theorem 15.12 on page 318.)

2. Then, for

PROCEDURE 7.2 To get the Output Size for a regular mono-
mzial function

Use theorem 7.3 on page 186.

DEMO 7.5 Given the function specified by the global input-output rule
o 22 KIP(z) = (+82.33) - 2%

get the Output Size.
Using theorem 7.3 on page 186 we get

KIP
large ———— small

KIP
small ——— large
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DEMO 7.6 Given the function specified by the global input-output rule
z 222 L KAP(z) = (—73.93) - o1

get the Output Size.
Using theorem 7.3 on page 186 we get

KAP
large ——— large

KAP
small ——— small

DEMO 7.7 Given the function specified by the global input-output rule
22T KAT(z) = (—25.25) - o7

get the Output Size.
Using theorem 7.3 on page 186 we get

KAT
large ——— large

small K—AT> small

DEMO 7.8 Given the function specified by the global input-output rule
oz 2 KIT(x) = (+44.06) - 774

get the Output Size.
Using theorem 7.3 on page 186 we get

KIT
large ——— small

KIT
small —— large

4 Reciprocity

1. Another way to look at theorem 7.3 on 186 is to realize that, for a
monomial function,
e If Output Size = Input Size, this can only be because Exponent Sign =
+,
e If Output Size = Reciprocal Input Size, this can only be because Expo-
nent Sign = —.
Which gives us the following which we will use to graph regular monomial
functions efficiently:
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THEOREM 7.4 Reciprocity (For Regular Monomial Functions.)

e If large — large, then small — small (And vice versa.)
e If large — small, then small — large (And vice versa.)

EXAMPLE 7.15.

After we have found, for instance, We get from theorem 7.4

Outputs AOutputs
+ +00
)
20
=
+
Screen Screen
L : +smallo il
Offscreen Offscreen
P Inputs Inputs
X q >
—o 0 +large o 0 %—
S
=

EXAMPLE 7.16.

After we have found, for instance, We get from theorem 7.4

AOutputs AOutputs
+00 00
Screen Screen
0 - 0
—smalllL ]
e ) i e —
L Offscreen : Offscreen
) i
S !
£ |
I
—00 : —o0
i Inpu»ts p Inputs
T
—0 +00 —o0 0 N Harge+oo

1S
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2. The relationship between co and 0 is not only important but also
fascinating.

a. Even though, as an input, 0 is usually not particularly important,
there is an intriguing “symmetry” between oo and 0 namely:

These These These These
numbers numbers numbers numbers
are are are are
near — near 0 near 0" near +oo

3 RAN ¢

—) > Ruller

—00

More precisley, small numbers are some sort of inverted image of large num-
bers since the reciprocal of a large number is a small number and vice versa.

EXAMPLE 7.17.

The opposite of the reciprocal of —0.001 is +1000. In a Magellan view, we
have

Neighborhood of Infinity

Neighborhood &f 0

b. Here is yet another way to look at reciprocity. We start with the
graph of a monomial function and we “turn” it so as to see it while facing
oo and we then compare it with the graph near 0 of the reciprocal function.

EXAMPLE 7.18.
Let the monomial function specified by the global input-output rule

RAIN _, RAIN(z) = (+1)at
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the local graph near 0 of RAIN is: - m

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more until the edges touch.

closin
enlarging bending lA 9 X\ touching

oo &, P

e —— _

< -

i
i
i
0

We then glue shut the edges of the
screen at oo to get a cylinder.

rotating

Then we turn the cylinder half a
turn so that oo gets to be in front
of us:

Now we cut open the cylinder along

the input level line for 0 Finally we widen

the cut and unbend the screen forward more and more until it becomes flat.
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unbend shrink

The local graph near oo that we got It is the same as the local graph near
for RAIN is: 0 of the reciprocal function specified
by the global input-output rule
TENA

r ——>- TENA(x) = (+1)z™4
0

(Keep in mind that the left side of oo is the positive side of co and the right
side of oo is the negative side of co. So the graphs on the positive sides are
the same and the local graphs on the negative sides are also the same.)

EXAMPLE 7.19.
Given the monomial function specified by the global input-output rule

MIKE s MIKE(z) = (+1)z3

the local graph near 0 of MIKFE is:

0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more closing down the gap until the edges touch:
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closing -

bending P
enlarging o 9 ‘ .
—o0 ‘ +o0

We then glue shut the edges of the
screen at oo to get a cylinder.

rotating
Then we rotate the cylinder half a

turn so that oo gets to be in front - ’7

of us:

Now we cut open the cylinder along
the input level line for 0

|

B 1 H
\_/E/
Foo %

Finally we widen the cut and unbend the screen forward more and more until

it becomes flat.

widen out unbend
open — —

O+ 07 0+ +o0 —00 O-

+o0 —o0
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The local graph near co that we just It is the same as the local graph near
got for MIKE is: 0 of the reciprocal function specified
by the global input-output rule
JANE . +3
x ——— JANE(z) = (+1)z

i
o+ +o0 —00 0 i 0~ 0* +oo

(Keep in mind that the left side of oo is the positive side of co and the right
side of oo is the negative side of co. So the graphs on the positive sides are
the same and the local graphs on the negative sides also are the same.)

5 Global Graphing

We can of course get the global graph the way we will get the global graph
of all the other functions in this text, that is as described in 77, but, in
the case of reqgular monomial functions, we will be taking advantage of the
following THEOREMS which we must become completely familiar with—but
which we certainly must not memorize:

e The first part of theorem 7.1 on page 180 namely:

THEOREM 7.5 Output Sign for positive inputs. (For Reg-
ular Monomial Functions.)
Output Sign for positive inputs = Coeflicient Sign.

e Theorem 7.3 on page 186

e Theorem 7.4 on page 188

e Theorem 7.2 on page 183
Then, after a little bit of practice, we will be able to get the global graph
very rapidly:

PROCEDURE 7.3 Graph a regular monomial function:

a. Locate the graph place for inputs near +oo as follows:
i. Determine if the graph place for inputs near +oo is above or
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below the 0-output level line.

(Use theorem 7.5 on page 180)
ii. Determine if the graph place for inputs near +oo is near the

0-output level line or near the co-output level line,

(Use theorem 7.3 on page 186)
b. Locate the graph place for inputs near 0.

(Use theorem 7.4 on page 188 ).
c. Locate the graph places for inputs near —oo and inputs near

(Use theorem 7.2 on page 183)
d. Draw the global graph through the graph places.

DEMO 7.9 Get the global graph of the function specified by the global input-

output rule
o B KIR(x) = (+52.92) -2~ 13

1. We locate the _ for inputs near ~_ AOUPUs

v
“+00: Ef
i. Since Coefficient Sign = +, IN |
+ KIR + 3 Screen
? S
g B

(Using theorem 7.5 on page 193.)

ii. Since Exponent Sign = —,
KIR

large ———— small

(Using theorem 7.3 on page 186.)

2. We locate the _ for inputs near -

Offscreen

ot 1, Inputs
(Using theorem 7.4 on page 188.) 0 wsmall  +large
3. We locate the_ for inputs near  AOuPUs
—oo and near 0. l
(Using theorem 7.2 on page 183.)
Screen
i Offscreen
— l
i Inpuis
o 0 +oo
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4. We draw the AOutputs
global graph
through the
graph places.
And, to the right
is a Magellan
view of the
global graph.

i
Screen |

o 0

195

DEMO 7.10 Get the global graph of the function specified by the global input-

output rule
KIM

x ——— KIM(z) = (—40)

1. We locate the _ for inputs near AP

—+00:
i. Since Coefficient Sign = —,

K

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign = +,
large _RIM large
(Using theorem 7.3 on page 186.)
2. We locate the _ for inputs near
0r.
(Using theorem 7.4 on page 188.)

3. We locate the _ for inputs near

—oo and near 0™
(Using theorem 7.2 on page 183.)

.’L’+6

Screen

J1puis—

\

|
0% Offscreen
Q
\ Inpits
\
—o0 +small +large
A\Outputs
+00
Offscreen
Screen
&
3
8
T > Even |
S
8
K
) inpgts
i Ll
—00 0
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4. We draw the +OOAOutputs
global graph
through the Offscreen
graph places.

And, to the right

Screen

is a Magellan 0
view of the
global graph.
—0
Inputs
—» 0 +o0

DEMO 7.11 Get the global graph of the function specified by the global input-
output rule

z 2Ny KIN(z) = (—40.87)2™5

1. We locate the _ for inputs near A
o0

—+00:

i. Since Coefficient Sign = —,

KIN
+ — — Screen

(Using theorem 7.5 on page 193.)
ii. Since Exponent Sign = +,

—small

large RN, large A~
(Using theorem 7.3 on page 186.) large Offscreen
2. We locate the _ for inputs near
0. Ly Inputs
(Using theorem 7.4 on page 188.) —0 +imall ~ +large
3. We locate the _ for inputs near ~ CUPUish
—o0 and near 0. +large
(Using theorem 7.2 on page 183.) N B Offscreen
Screen
+small K ,,,,,,,,,,,,,,,,,,,,,,,
—00
\ Inpu>ts
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4. We draw the  Outputsy
+00

global graph

through the a—
graph places.
And, to the right

creen

is a Magellan 0
view of the
global graph. -
0
/npu}ts
% 0 +00

DEMO 7.12 Get the global graph of the function specified by the global input-
output rule

o 8 KIB(x) = (+77.03) - 28

1. We locate the _ for inputs near ~ “U'sA J

+oo: +large
i. Since Coefficient Sign = +, )
+ ﬂ) + Screen
(Using theorem 7.5 on page 193.) +small ——

ii. Since Exponent Sign = —,

KIB
large ————— small

(Using theorem 7.3 on page 186.) Offscreen

2. We locate the _ for inputs near .

ot. ’ Inputs
(Using theorem 7.4 on page 188.) —0 témall ~ +large

—o0 and near 0.
(Using theorem 7.2 on page 183.) N §)

G

0 |

3. Welocate the _ for inputs near A

Screen

Offscreen

Inputs
»

—00 / 0 +CDV

L
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4. We draw the  Outputsy
global graph oo
through the

graph places.

And, to the right

is a Magellan 0
view of the Screen
global graph.
Offscreen
—00
Inputs
>
—0 +o0

6 Types of Global Graphs

Each type of global input-output rule corresponds to a type of global graph.
The global graphs are shown both from “close-up” to see the bounded graph
and from “faraway” to see how the graphs flatten out.

Input-output rule From “close-up” From “faraway”

Jrot#Out‘puts !

|

i

i

i

|

PEP —. —
_ “+even 0 -
x —— PEP(x) = (+1)x . !
Offscreen
- Inpuis
—0 0 +oo'
Outﬂuéé‘
Screen’
0 +
PEN Offscreen
x ——— PEN(z) = (—1)xteven
- Inpu:s
—0 0 +oo'

Continued on next page
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Input-output rule

z L% POP(z) = (+1)ato%

z LN PON(z) = (—1)a+odd

x PP, NEP(z) = faz—"

x NEN, NEN (x) = —g—even

“ R [13 2
From “close-up From “faraway
Outputsgy
400
0]
Screen
Offscreen
—00
Inputs
>
—0 0 +o0
Outputs
+00 "
Screen|
O 4+7
Offscreen
—00
Inputs
>
—0 0 +00
Outputs‘ T
+00
0
Screen
Offscreen
—00
Inputs
>
—o0 +o0
Outputs‘
+o0
Screen
0
Offscreen
—00
Inputs
>
+00

Continued on next page
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Input-output rule From “close-up” From “faraway”
Outputs;
4
KIR _ 0
r ——5 KIR(x) = +x—°%
Screen
Offscreen
o
Inpﬂs
—o0 +o0
Outputs,
I

Screen

NON ($) — _—odd 0

xr —— NON

Offscreen

—00

Inputs
»
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Chapter 8

Exceptional Monomial
Functions

Outputs Of Constant Functions, 202 e Graphs Of Constant Functions,

203 e Features Of Constant Functions, 205 e Output Of Linear Functions
at xg, 207 @ Outputs Of Linear Functions near oo and 0, 208 e Graphs Of
Linear Functions, 209 e Features Of Linear Functions, 212 .

We now investigate the exceptional monomial functions, that is the
monomial functions with exponent 0 and the monomial functions with ex-
ponent +1 . Even though they are ... exceptionally simple, they are ...
exceptionally important, the monomial functions with exponent 0 because
they are used to approximate other functions in INTEGRAL CALCULUS and
the monomial functions with ezponent +1 because they are at the basis of
APPLIED MATHEMATICS.

FUNCTIONS

DEFINITION 8.1 Constant Functions are monomial functions
with exponent 0, that is functions specified by x _CONSTANT
CONSTANT(x) = ax’. (Where a, called the constant coefficient,
is the bounded number that specifies the function CONSTANT.)

EXAMPLE 8.1. The constant function FLAP specified by the constant

201
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abuse of language

UNIT, coefficient +5273.1 is the function specified by the global input-output rule
UNIT- o —A” L PLAP(z) = +5273.1 2°
——

constant coefficient
= +5273.1
——

constant coefficient

LANGUAGE 8.1 The name constant functions is an abuse of language
because it is not the function itself which is constant but its output which
is constant in the sense that, since the coefficient is neither multiplied nor
divided by any copy of x and thus to be left alone, the output remains
constantly equal to the coefficient no matter what the input is.

NOTES8.1 2 must absolutely not be read “z multiplied by 0" because
that would give the output 0 no matter what. (This is a very common
error among beginners.)

Contrary to what we did with reqular monomial functions we will not
normalize constant functions. In fact, the constant functions with constant
coefficients +1 and —1 have special names:

e The constant function with coefficient +1 is usually called UNITY. In
other words, UNIT} is the function specified by the global input-output

rule
T UNIT, (z) = +1
e The constant function with coefficient —1 is usually called UNIT_. In
other words, UNIT_ is the function specified by the global input-output
rule

UNIT- L UNIT (2) = -1

1 Outputs Of Constant Functions

1. In order to get the output at a given bounded input x( of a monomial
function with exponent 0 , we still use 7?7 on ?? which, in the case of constant
functions, boils down to nothing.
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PROCEDURE 8.1 To get the output at xzg of the con-
stant function specified by the global input-output rule

g —CONSTANT , cONSTANT(z) = a

i. Declare that x is to be replaced by zg
CONSTANT

x _CONSTANT . cONSTANT(z) ] —a
T<—To T<—XT0 T<—T0o
which however, since there is nothing to replace with zq , gives:
zo —ONSTANT . CONSTANT (x0) = a
—~—

output-specifying code
ii. There is nothing to erecute and the output number is:
=a
which gives the input-output pair

(1:07 a’)

TEMO 8.1 To get the output at —3 of the function specified by the global

input-output rule

o AP L FLAP(z)=  +5273.1
——

output specifying code

This is short for
=  45273.12°
————

output specifying code
and since the exponent is 0 so that we do not multiply or divide the coefficient
by any copy of the input there is no point declaring that the input is —3 and
nothing to execute and the output of the function FLAP at —3 s just the

coefficient:
= +5273.1
In other words, ... just as stated by the output-specifying code to begin with!

2. Since the output of a constant function is the coefficient no matter
what the input, the size of the output does not matter and the outputs,
both for inputs near oo and for inputs near 0, are again going to be the
coefficient.

2 Graphs Of Constant Functions

Constant functions are the first of the only three kinds of functions for which
we can get the global graph directly because the global graph is a straight
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straight line line.
1. Since the output of a constant function is equal to the constant co-
efficient no matter what the input is, the quantitative global graph will be
the output level line of the constant coefficient.

PROCEDURE 8.2 Graph the function specified by
g CONSTANT, cONSTANT(z) = a

i. Mark the constant coefficient a on the output ruler
ii. Draw the output level line through the tickmark

EXAMPLE 8.2. Here is the global graph of the function UNIT:
In Mercator view: In Magellan view:
Outputs
+00
Offscreen
+1
OF memimimimmm e .
Screen
—00
Input:
—00 +ooi
EXAMPLE 8.3. Here is the global graph of the function UNIT_:
In Mercator view: In Mage”an view:
AOutputs
+00
Offscreen
OF =mimmimmm e .
-1
Screen
—00
Input.
—00 +oos>

2. Since the global graph is so easy to get, we get the local graphs from
the global using?? on ??. In fact, we will usually need only the local graph
near co and the local graph near 0 .
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global height

EXAMPLE 8.4.
Local graph of UNIT, near oc: Local graph of UNIT, near 0:
Outputs
JrooAOut/oui‘s +ooA ;
Offscreen : Offscreen
;
+1 — +1 —t—
1
OF == mmemimimimimi e s = OfF == === FERETE TR PE T
i
Screen ' Screen
!
1
i
) —0 i
\ (_Input: H Input.
-0/ N —0 - g+ +00
EXAMPLE 8.5.
Local graph of UNIT_ near oc: Local graph of UNIT_ near 0:
Outputs
JrooAOut/oui‘s +ooA ;
Offscreen : Offscreen
;
i
NN . | AR . |
] e — -1 ——
Screen ' Screen
!
1
i
—00 —00 f
\ (_Input: H Input:
—0 7 N too —00 -+ +00

3 Features Of Constant Functions

What makes constant functions exceptional among monomial functions is
that they lack both local slope and local concavity and have only local height.

But then, since for a constant function the local height is the same ev-
erywhere, we can talk of the global height of a constant function.

EXAMPLE 8.6. Let f be the function specified by the global input-output
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linear coefficient
rule

z—L f(z) = (-31.72)2"

= —31.72
AOutputs
. . +00 1
the global height of f is —31.72: i e
I S
3172 & Global Height
E Screen
o ;
: Input:
—00 0 +oo$

LINEAR FUNCTIONS

DEFINITION 8.2 Linear Functions are monomial functions
with exponent +1, that is functions specified by x LINEAR
LINEAR(x) = axt!. (Where a, called the linear coefficient, is
the bounded number that specifies the function LINEAR.)

EXAMPLE 8.7. The constant function FLOP specified by the constant
coefficient +5273.1 is the function specified by the global input-output rule

FLOP  FLOP(z) = +5273.1 2!
——
linear coefficient

= 452731z
——

linear coefficient

LANGUAGE 8.2 The reason monomial functions with exponent +1
are called linear functions is that they are (the simplest instance of)
a kind of functions with an extremely desirable but extremely rare
feature, namely linearity. (See https://en.wikipedia.org/wiki/
Linearity.) However, one should be careful because the name lin-
ear function is also used in PRECALCULUS textbooks for a different kind
of functions, which we will investigate in chapter 9 and chapter 10 under
the name of affine functions.


https://en.wikipedia.org/wiki/Linearity
https://en.wikipedia.org/wiki/Linearity
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Contrary to what we did with reqular monomial functions—and just like {DENTITY
what we did with constant functions, we will not normalize linear functions. orp QS I TE
In fact, the linear functions with linear coefficients +1 and —1 have special opposite of z
names:

e The linear function with coeflficient +1 is usually called IDENTITY
because the output is identical with the input. In other words, IDENTITY

is the function specified by the global input-output rule

o LPENTITY \ IDENTITY (z) = ©

e The linear function with coefficient —1 is usually called OPPOSITE.
In other words, OPPOSITE is the function specified by the global input-

output rule

OPPOSITE OPPOSITE(x) = —x (Where —z is read opposite of z)

4 Output Of Linear Functions at x

In order to get the output at a given bounded input xq of a linear function,
we proceed exactly as with regular monomial functions, that is we still use
7?7 on 7?7 but, in the case of linear functions, the execution boils down to
just one multiplication.

TEMO 8.2 To get the output at —3 of the function specified by the global

input-output rule

2K L BINK(z) = (—26.18)z™
————

output-specifying code

i. We declare that z is to be replaced by —3

x _BINK , BINK(x) = (—26.18)z "
T+—3 T+ —3 T+—3
which gives:
Sl
—3 PINE , BINK(—3) = (—26.18) - (—3)

output specifying code
ii. We execute the output-specifying code into an output number:
=—26.18- -3
and, using theorem 19.2 on page 365, we get:
= +78.54
which gives the input-output pair
(—3,+78.54)
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5 Outputs Of Linear Functions near oo and 0

In order to get the output near oo or near 0 of a linear function, we proceed
exactly as in the case of regular monomial functions but, in the case of linear
functions, the execution boils down to just one multiplication.

TEMO 8.3 To get the output near co of the function specified by the global
input-output rule

o 2K L BINK(z) = (—26.18)zt!
—_——

output-specifying code

i. We declare that z is to be replaced by =large
z _BINE , BINK(z) = (—26.18)z ™!

z<—=*large z<—=*large r<*large

which gives:

Sl
+large _DINK , BINK(—3) = (—26.18) - (£large)

output specifying code
ii. We execute the output-specifying code

= —26.18 - £large
Since 26.18 is bounded, theorem 1.2 on page 38 gives 26.18 - large = large
and, using theorem 19.2 on page 365, we get:

= Flarge
which gives the input-output pair

(Elarge, Flarge)

TEMO 8.4 To get the output near 0 of the function specified by the global
input-output rule

o —E L JINK(z) = (+45.57)z

——
output-specifying code

i. We declare that z is to be replaced by +small
T "= JINK (x) = (+45.57)z ™!

z—tsmall x—tsmall z—tsmall
which gives:

1
tsmall —E JINK (£small) = (+45.57) - (£small) -

output specifying code
ii. We execute the output-specifying code
= +45.57 - £small
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Since 45.57 is bounded, theorem 1.2 on page 38 gives 45.57 - small = small
and, using theorem 19.2 on page 365, we get:
= £small
which gives the input-output pair
(£small, £small)

6 Graphs Of Linear Functions

After the constant functions, the linear functions are the second of only three
kinds of functions for which we can get the global graph directly because the
global graph is a straight line.

With linear functions, though, it is not as easy to make the case that
the global graph is a straight line as with constant functions because making
the case requires having a geometric definition of what a straight line is. So,
here we will take for granted that the global graph of a linear function is a
straight line.

1. Given a linear function specified by a global input-output rule, the key
to finding the quantitative global graph is another theorem from GEOMETRY,
namely that a straight line is specified once we know two of its points.
(Which, in the real world, corresponds to the fact that all we need to draw
a straight line through two points is a straightedge.) As a consequence,
the quantitative global graph of a linear function will be specified by two
input-output pairs.

There is no restriction as to what bounded inputs to use but given the linear
function specified by the global input-output rule

w#f(a;):a-x

there are two bounded inputs that make it very easy namely 0 and +1
because:
e Inputting 0 gives:
v T @)

x<+—0

x<+0

240
0—L 5 f0)=a-0
and, because any number multiplied by 0 gives 0
=0
So, (0,0) is an input-output pair.
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e Inputting +1 gives:

z—+1 o

+1—L s f(+1) =a - (+1)

* T—+1 —— f@)

z—+1

and, because any number multiplied by +1 gives that number
=a
So, (+1,a) is an input-output pair.
2. Given a function specified by a global input-output rule, we will use:

PROCEDURE 8.3 Graph the function specified by = LINEAR,

LINEAR(z) =a-

i. Plot the input-output pairs for two inputs, for instance 0 and 1
ii. Draw a straight line through the two plot points

EXAMPLE 8.8. Let f be the function specified by the global input-output
rule

r—1 f(z) = —-2.5z
in order to get the quantitative global graph,

i. We plot the input-output pairs ii. We draw a straight line

(0,0) and (1,—2.5) through the input-output pairs
(0,0) and (1,—2.5)
outputs 4 Outputs 4 \
+6 Screen +6 \ Screen
+4 +4
+2 +2
0 0 \
») : -2
-4 -4 \
_6 6
Offscreen Offscreeh \\
Inputs V| Inputs

-6-4-2 0 +2+4+6 -6-4-2 0 +2+4+6

EXAMPLE 8.9. Here is the global graph of the function IDENTITY :
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Graphs Of Linear Functions

In Mercator view:
AOutputs

+00

—00

EXAMPLE 8.10.

Offscreen

Screen

Input:
+OO$

In Mercator view:
AOutputs

+00

Offscreen

In Magellan view:

211

Here is the global graph of the function OPPOSITE:
In Magellan view:

3. Since the global graph is so easy to get, we get the local graphs near
0 and near oo using 7?7 on ??. In the rest of this text, though, given a linear
function, we will usually need only the local graph near oo and the local
graph near 0.

EXAMPLE 8.11.
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global slope
run Local graph of IDENTITY, near Local graph of IDENTITY, near
rise 00:: 0::

Outputs OOAOUtPUtS

+00 ! + !
i Offscrey ! Offscreen
1 !
1 1
H 1
1 1
i

Screen Screen

\ - (_Inpt . Input.
-0 7 0 v 4o -0 -0t +00
EXAMPLE 8.12.
Local graph of IDENTITY_ near Local graph of IDENTITY_ near
00:: 0::
+OOAOutputs +OOAOutputS

Offscreen Offscreen

Screen

AY (_InpL —H_’n%
—o0 7 0 U +o0 —00 0- 0+ +00

7 Features Of Linear Functions

What makes linear functions exceptional among monomial functions is that
they lack local concavity and have only local height and local slope.

But then, since for a linear function the local slope is the same every-
where, the graph of a linear function has a global slope, that is the fraction
ELSE where, given two input-output pairs, the run is the difference from one
input to the other and the rise is the corresponding difference from one
output to the other.

In fact, the reason we like to use the inputs 0 and 1 is that they make
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it easy to see that the global slope of the global graph of a linear function is dilation function
the linear coefficient of the global input-output rule.

EXAMPLE 8.13. Let f be the function specified by the global input-output
rule
z L f(2) = (+0.5)z
= +0.5z
AOutputs
+o0
Offscreen

1
i
Rise =+0.5 i
1
i

the global slope of f is §oe = £65 = 405

Run =+ q
h Input:
—00 0 +1 +oo$'>

LANGUAGE 8.3  Another name for linear function is dilation function
because it is easy to prove that the distance between any two outputs
is obtained by just “dilating” the distance between the two inputs by
the coefficient. (See https://en.wikipedia.org/wiki/Dilation_
(metric_space).)


https://en.wikipedia.org/wiki/Dilation_(metric_space)
https://en.wikipedia.org/wiki/Dilation_(metric_space)
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base function
add-on number
add-on function
sum function

Chapter 9

Prelude To Polynomial
Functions

Adding Functions, 215 e Binomial Functions, 217 e Graphs of Binomial
Functions, 219 e Trinomial Functions, 222 e Comparing Monomial
Functions, 223 .

As already mentioned, monomial functions will be the building blocks
from which all the functions we will be investigating in this text are built
from. So we will always have to use more than a single monomial function
at a time.

1 Adding Functions

1. Given a function, to which we will refer as base function, one of-
ten needs to add a number to each output that the base function returns.
Whether or not this add-on number remains the same regardless of the
input or differs depending on the input, we can look upon the add-on num-
ber as being itself the output returned for the same input by some other
function to which we will refer as add-on function. (If the add-on number
is the same regardless of the input this just means that the add-on function
is a constant function.)

There is then going to be a third function, to be referred as sum function,
which, for each input, will return the output returned by the base function
plus the add-on number returned by the add-on function for that input.

In other words, given the two functions

215
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x 2458, BASE(x)

and

x APPON, ADD-ON(x)

there will be a third function specified as

x 2, SUM(z) = BASE(x) + ADD-ON (x)

2. In sciences such as
textscBiology,
textscPsychology and
textscEconomics the three functions are often in tabular form.

EXAMPLE 9.1. When we shop online for, say for a textbook, we first see
a -—the base function. However, a shipping charge, which might or
might not depend on the textbook, is usually added-on to the list price and is
given by the _the add-on function. The price we end-up
having to pay is thus given by the actual price list—the sum function.

LIST SHIP

—— LIST (z) xr —— SHIP(x)
English 140 English 13.15
History 80 History 3.45
Biology 130 Biology 7.25
Math 10 Math 3.75
Poetry . Poetry -
x LAY, PAY (2)

English 14018l = 153.15
History — S0-+-Bll = 83.45
Biology -+- = 137.25
Math 10508 = 13.75
Poetry 70588 = 75.32

which says, for instance, that while the list price of the English textbook is
, a shipping charge of brings the price to be paid to - +

B — 5153.15.

3. Instead of representing the functions by tables, one might want to
represent them by graphs. Rather than to use plots, though, one often uses
bar graphs in which the pieces of input level lines that are between the
0-output level line and the plot point are highlighted into bars.
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binomial function

EXAMPLE 9.2. The situation in the above example would be represented
by the following bar graphs.
LIST SHIP PAY
x —— LIST(x) x —— SHIP(x) x —— PAY (x)
AOutputs AOutputs AOutputs
Offscreen Offscreen Offscreen
160 160 160
140 140 140 f-r B -
120 120 120
100 100 100
80 80 80 " -
60 60 60
40 40 40
20 20 20 ..
(1) .. Lol TR SO OF-- i . -_._!_._;:-._.l_._ OF-=cid. Do L) de- Do
Inﬁts Inﬁts /ngt
S % & 4 o S % & 4 o S 4% & 4 &
0, % 0, R ‘0 %, %y 0, B O %, %y 0, B O
% o % 7 % % o % 7 % % o % P

2 Binomial Functions

1. Given a base function which is a monomial function, when we add-
on a monomial function with the same exponent, the sum is a monomial
function with the same exponent.

EXAMPLE 9.3. Given the base function MINT specified by the global
input-output rule
MINT , MINT(z) = —12.822+
and given the add-on function T'E A specified by the global input-output rule
x B TEA(z) = +49.282 4

then the sum function will be specified by the global input-output rule
o —M L SUM(x) = MINT(z) + TEA(x)
= —12.822+ @ +49.28z T4
= [~12.82 ® +49.28] x*

= +36.462

2. However, when the exponent of the add-on function is different from
the exponent of the base function, then the sum function is not a monomial
function but what is called a binomial function.
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EXAMPLE 9.4. Let BASFE be specified by the global input-ouput rule
x 228 BASE(z) = (-3)2™?

and let ADD-ON be specified by the global input-ouput rule

ADDON . ADD-ON(z) = (+5)°
=45
then the SUM function is specified by the global input-ouput rule
2 SUM(z) = (=3)212 & (+5)2°
=(-3)z™ +5

To see that SUM cannot be replaced by a single monomial function, we first
evaluate all three functions at some input, for instance +2:

42 BAE BASE(+2) = (—3)(+2)*2

=-12

and

4o APPON S ADD-ON(4+2 = (+5)(+2)°

=45

then

z 2N SUM(z) = (—=3)(4+2) T2 & (+5)(+2)°

=—-126+5
= -7

The question then is what monomial function could return the output —7 for

the input +2.

Of course, we can easily find a monomial function that would return the

output —7 for the input +2. For instance, the dilation function x EN f(z) =
—%:U does return the output —7 for the input +2. Butf is not going to return
the same output as SUM for other inputs, say, +3, +4, etc which it should.

So, the binomial function
z SIML SUM(z) = (—3)2 2 +5
cannot be replaced by the single monomial function

z L flz) = —;x
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NOTE 9.1

We noted at the beginning of Chapter 5 that monomial functions were
only rarely called monomial functions and that this was unfortunate:
indeed, it would be nicer to say that a binomial function cannot be
replaced by a single monomial function. (We cannot have two for the

price of one.)

3 Graphs of Binomial Functions

1. When the exponent of the add-on function is the same as the exponent
of the base function, the bar graphs show exactly why the sum function will
have again the same exponent.

a. Given a constant base function, adding-on a constant function:

EXAMPLE 9.5.
AOutputs

+8 -
+6 -

+4 |-

Offscreen

2

0
-2

4

T

—6 |-

—8 -

Inﬁts

78 76 4 ;2 0+2 +4 +6 +8

AOutputs Aoutouts
Offscreen Offscreen

+8 |- +8 |-
+6 |- +6 |-
4] +4]-
+2 1} +2 -
of---- ] AU Ny B B e
- MU RARERRER
4 4
—6}- 6}
8- —8 |-

Inputs

>

—-8-6-—4-20+2+4+6+8

lngts

86-4-2012+4+6+8

b. Given a dilation base function, adding-on a dilation function:

EXAMPLE 9.6.
AOutputs

Offscreen

+8 |-
+6/-
+4 |-

42|

(=}

-2
4
-6

—8 |-

1,,_1,1,

Ll

Inﬁts

8642012747678

A\Outouts Aoutouts
Offscreen Offscreen
+8 |- +8 |-
+6 |- +6 |-
+4] +4]- [
+2f- +2 |-

OF---- -r- ,,_,,},,;,J‘,‘L,‘l._ OF---~p-y-1- Wﬂf—irllrfllf‘
2} l ] i 21 [ [ 1 i
6} i 6 ;

-8 |- 8
: Inﬁts

8642072141618

Inﬁt:

8642012147618
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2. When the exponent of the add-on function is not the same as the
exponent of the base function, the bar graphs show clearly why the sum

function cannot be a monomial function.

a. Given a constant base function,

e Adding-on a dilation function:

EXAMPLE 9.7.
AOutputs

+8 |-
+6 |-
+4 [
+2 [

(1) SUUEPRE D N DO NS Y O

2}
6 |
—8 |-

Offscreen

Inws

AOutputs

+8 -
+6}--
+4 fees
2}
of---
2}
6}
8-

Offscreen

Inﬁts

-8-6-4-20+2+4+6+8

8642072141618

A Outputs

+8 -
+6 |-
al 1.,
+2 1
of---AL-_B_ L. 4
2}
6}
8 |-

Offscreen

Ingts

—8-6-4-20+2+4+6+8

e Adding-on an even positive exponent monomial function:

EXAMPLE 9.8.
AOutputs

+8 |-
+6 |-
+4 |-
+2}-

(o) AU Uy 1 D A L 0

2|
6}
8 |-

Offscreen

AOutputs

+8 -
+6}--
+4 feer
2}

2}
ey .
8 |-

LT

Offscreen

"8 64 20+2+4+6+8

Inws

8642072141618

Inﬁts

A Outputs

+8 -
+6 |-

2}
—6 feer
—8 |-

0

Offscreen

e Adding-on an odd positive exponent monomial function:

EXAMPLE 9.9.

8642012147678

Ingts



3. Graphs of Binomial Functions 221

AOutputs AOutputs AOutputs
Offscreen Offscreen Offscreen
+8 f-- +8 |-+ +8 |-
+6 |- +6 [ +6 |-
+4 1 +4 f-ee +4 f-o-
42 42} l 42}
OF-r-vy1rvrrivi1r1r- 0*'-"‘*:l"r*:‘*'k'r'irflﬁ - OF =" rrvyrriyir:-
=2t 2 |- : i I =2t
el T S N N =6 O BRI T LT
8- s s
[ : ! Inputs : P i 1 Inputs lnut<
—-8-6-4-20+2+4+6+8 ; —8-6-4-20+2+4+6+8 ; -8-6-4-20+2+4+6+8 i

b. Given a dilation base function,

e Adding-on an even monomial function:

EXAMPLE 9.10.

Aoutouts A\Outputs Aouiputs
Offscreen Offscreen Offscreen
+8f-- +8 |-+ +8 |-
+6 |- +6 |- +6 |-
+4 +4 [ +4
+2 - +2 +2
OfF--- JJ,[_ OF---- 7,1,1‘,7‘,7,:7,{.,4,,‘],,‘[,_ OF = -y pp--t-4-4-4-
2 P 2| i P -2 b
—4 -4 -4
6 |- : —6 }- i 6}
8| 8- 8-
i Inputs i Inputs Inputs
> - >

8 6 4 2072+47678 864 2072147678 86 4 2012+47678

e Adding-on an odd monomial function:

EXAMPLE 9.11.

Aoutputs A\Outputs Aoutouts
Offscreen Offscreen Offscreen
+8 1 +8 - +8}----
+6 |- +6 ] +6 |-
+4f-- +4 |- +4 |-
2} I [ +21- +2 1}
OfF-=-- "['T"E":L'J":": N Of--- 0
2} | I S 2} N
] L o 4} 4|
—6 |- : : 6} i —6 |-
-8 |- —8 |- -8 |-
i Inputs i Inputs
> —>

T8 642 012741618 8642 012147618
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4 Trinomial Functions

There is of course no reason why the base function could not itself be a
binomial function. In fact, this can very well be the case and the sum
function will then be called a trinomial function.

EXAMPLE 9.12. Let BASFE be specified by the global input-ouput rule
g BASE, BASE(z) = (-3)2° @ (+7)z™!
and let ADD-ON be specified by the global input-ouput rule
g APDON . ADD-ON(z) = (+5)2+?
then the SUM function is specified by the global input-ouput rule
SUM

x5 SUM(z) = (=3)2° @ (+7)z ™ @ (+5)2™3
= -3 + 7z + 52
EXAMPLE 9.13. Let BASFE be specified by the global input-ouput rule
BASE

r =222 BASE(z) = (=3)z™t @ (+7)2°
and let ADD-ON be specified by the global input-ouput rule
APDON . ADD-ON(z) = (+5)a >
then the SUM function is specified by the global input-ouput rule
g SUM, SUM(z) = (=3)z™ @ (+7)2° @ (+5)z 2
=3z +7 +5272
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affine function
generic global
input-output rule
linear, coefficient
constant, coefficient

Chapter 10

Affine Functions: Local
Analysis

Output at x0, 226 e Output near oo, 228 e Output near z, 230 e Local
graphs, 234 e Local Feature-signs, 237 .

Affine functions are specified by global input-output rules like the
generic global input-output rule:

ATTINE , AFFINE(z) = azt' & b

—_———
output-specifying code

which we usually write

= ar +b
——
output-specifying code

where a, called the linear coefficient, and b, called the constant coeffi-
cient, are the bounded numbers that specify the function AFFINE.

EXAMPLE 10.1. The affine function NIN A specified by the linear co-
efficient —31.39 and the constant coefficient +5.34 is the function specified

by
NINA

g —NNA U NINA(z)= -31.39 = + 5.34
linear coefficient constant coefficient

It is worth noting that

225
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linear term
constant term

Zo
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NOTE 10.1 The terms in the global input output rule need not be
written in order of descending exponent. This is just a habit we have.

EXAMPLE 10.2. The function specified by the global input-output rule

x —INA L NINA(z) = —31.39z + 5.34

could equally well be specified by the global input-output rule

x—NNA L NINA(z) = +5.34 — 31.39z

We now introduce some standard terminology to help us describe very
precisely what we we will be doing.
The output-specifying code of the affine function specified by

AFFINE , AFFINE(z) = az +b
——
output-specifying code
consists of two terms:
e ax which is called the linear term.
e b which is called the constant term.

ExAMPLE 10.3. The output-specifying code of the function specified by
the global input-output rule
NINA
x ——— NINA(z) = —31.39z+5.34
—_———

Output specifying formula
consists of two terms:

=—-31.392 +5.34
—_———  ——

linear term constant term

LANGUAGE 10.1  Whether we look upon b as the constant coefficient,
that is as the coefficient of z° in the constant term bz° or as the constant
term bx¥ itself with the power z° “going without saying” will be clear
from the context.

1 Output at x0

We will use &g as a generic given input, that is z( is a bounded input that
has been given but whose identity remains undisclosed for the time being.
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PROCEDURE 10.1 To evaluate at xy the function specified

by v —LEINE L AFFINE(z) = az + b

i. Declare that x is to be replaced by zg

x _AFFINE | AFFINE(x) =ar+b
T4—T0 T<Zo TZo
which gives:
zo —2EEINE |\ AFFINE(zo) = axg + b

N
output-specifying code
ii. Fxecute the output-specifying code into an output number:
=axyg+b
which gives the input-output pair
(o, axo + b)

TeEMO 10.1 To evaluate at —3 the function specified by

ALDA . ALDA(z) = —32.672 + 71.07

i. We declare that z= is to be replaced by —3

@ _ALPA  ALDA(z) = —32.672 + 71.07

o pe—3 -3
which gives
—3 _ALDA , ALDA(-3) = —32.67(=3) + 71.07

output specifying code
ii. We execute the output-specifying code into an output number:
= +98.01 + 71.07

= +169.08
which gives the input-output pair
(—3,+169.08)
However, as already discussed in 7?7 7?7 and as has already been the case
with monomial functions, instead of getting the output of an affine function

at a given input, be it co or xg, we will usually get the output of the affine
function near that given input.
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2 Output near oo

In order to get the output near oo, we could proceed as we did in section 5
Output Near co with monomial functions, that is we could declare “x is
+large” and replace x everywhere in the output-specifying code by +large.
However, the output-specifying code of affine functions and all functions
thereafter will involve more than just one term and using +large would
become more and more time consuming.

So, in conformity with universal practice, we will declare “z near co” but
write just x after that. This, though, is extremely dangerous as it is easy to
forget that what we write may be TRUE only because x has been declared
to be near oo.

1. We will ezecute the output-specifying code, here ax + b, into a jet,
that is with the terms in descending order of sizes, which, because x is large,
means that the powers of x must be in descending order of exponents. We
will then have the local input-output rule near oo:

AFFINE
(z) =

z near oo ———— AFFINE(x ar+b

output jet near co

EXAMPLE 10.4. Given the function specified by

BIBA . BIBA(z) = —61.03 — 82.47x
To get the jet near oo, we first need to get the order of sizes.
i. —61.03 is bounded
ii. —82.47 is bounded and x is large. So, since bounded - large = large,
—82.47 - x is large
Then, in the jet near oo, —82.47x must come first and —61.03 comes second

So, we get the local input-output rule near co:

o near oo —21B4, BIBA(z) = —82.47x — 61.03

output jet near co

2. Altogether, then:

PROCEDURE 10.2 To evaluate near co the function specified

by v —LEINE L AFPFINE(z) = az + b

i. Declare that x is near oo

x _AFFINE | AFFINE(x)

X near oo

=ax+b

T near oo I near oo
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linear coefficient in the jet

which gives: near oo
AFFINE constant coefficient in the
= M .
x near oo —————— AFFINE(x) ax +b jet near oo
——

output-specifying code
ii. Fzecute the output-specifying code into a jet near oo

x near OOMAFFINE({L‘) = [a] z @ [b]
- =

output jet near oo

where
e [@ is the linear coefficient in the jet near oo

e |b| is the constant coefficient in the jet near co.
which gives the local input-output rule near oo:

x near oo —LEINE AFFINE(z) = [a] z ® [b]

output jet near co
(Here the jet near oo looks the same as the given global input-output
rule but that is only because the output-specifying code happened to
be written in descending order of exponents.)

TeEMO 10.2 To evaluate near co the function specified by

o NN L NINA(z) = —61.03 — 82.47x

i. We declare that = is near oo

z _NINA L NINA(x) = —61.03 — 8247

T near oo I near oo X near oo
which gives:

x near oo — N4, NINA(z) = —61.03 — 82.47 z

output-specifying code
ii. We execute the output-specifying code into a jet near oo:
= [—82.47] z @ [—61.03]
which gives the local input-output rule near co:
z near co — N4 NINA(z) = [—82.47] T @ [—61.03]

output jet near co

where:
e —82.47 is the linear coefficient in the jet near co
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e —61.03 is the constant coefficient in the jet near co.

(Here the jet near co does not look the same as the global input-output rule
because the output-specifying code happened not to be in descending order of
exponents.)

3. The reason we use jets here is that the term largest in size is the
first term so that to approximate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands
for “something too small to matter here”. In other words,

THEOREM 10.1 Approximate output near oo . For affine func-
tions, the term in the jet that contributes most to the output near co
is the highest degree term in the output jet near oo:

x near co —2LEINE AFFINE(z) = [a]x+ [...]

EXAMPLE 10.5. Given the function specified by
NINA , NINA(z) = —61.03 — 82.47z
IN

z near co — Y NINA(z) = [F827) = -+ [F6u03]
near oo we will often just use the approximation
2 near oo — VA, NINA(z) = [—82.47] z + .

3 Output near xg

While with monomial functions 0 played just as important a role as co (Sec-
tion 4 Reciprocity), this will not at all be the case with affine functions and
all functions thereafter as we will very often be interested in the neighbor-
hood of some given bounded input(s) other than 0. As a matter of fact,
the input 0 will usually not be of much more interest than other bounded
inputs. (But we will often be concerned with the output 0.)

1. In order to “thicken the plot” near a given bounded input, we could
proceed basically just as we did in section 6 Output Near 0 with monomial
functions, that is declare “x < xo + small” or “x + xg — small”and replace
x everywhere in the output-specifying code by “xg & +small”
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Xo & —small ;

+small }

[

EXAMPLE 10.6.

3 o » Inputs

0
Neighborhood of x,

The input +2.5 is near the given input +2:

+2| +0.5
>
Pl +2.5=+2+0.5
0 + 4+ + o+ kit
=om = NN D
B~ N N IO O
I f?:::!::::) > Inputs
Sobbodddd
[clio NN N \S N N Ne e}
Neighborhood of +2
or by “x < xg — small”.
Xo & fsmallg
i —small
P
: Xo
- E » Inputs

EXAMPLE 10.7.

Neighborhood of x;

The input +17.4 is near the given input +18:
+17.4=+18 0.6
P

9 LT+
- QLT+

> Inputs

g0-F LI+
o

>0
O
]
=
>
[e]
(]
o

Neig

However, as already pointed out in ??7 7?7, unlike monomial functions the
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output-specifying code of affine functions and all functions thereafter will
involves more than just one term. So, using “xo@® +small” or “xo® —small”
would become more and more time consuming and instead we will use “xg+
h” where the letter h is universally accepted as standing for +small or
—small. In other words, h already includes the sign.

Of course, in order to input a neighborhood of 0, we will declare that x < h,
aka x <— 0 + h, in other words that x is to be replaced by h.

2. We can then ezecute the input-output specifying phrase into a jet
that is with the terms in descending order of sizes which here, since h
is small, means that the powers of h will have to be in ascending order of
exponents. We will then have the local input-output rule near the given

input:
AFFINE

xog®h —————— AFFINE(xz9 ® h) = Powers of h in ascending order of exponents

output jet near oo
3. We will therefore use:

PROCEDURE 10.3 To evaluate near zy the function specified

by v —LEINE  AFPFINE(z) = az + b

i. Declare that x is to be replaced by zg + h

x _AFFINE , AFFINE(z)

z+xz0+h

=azxr+b
z<—xz0+h

z+x0+h
which gives:

2o+ h —2EEINE ARFINE(zo+h) = a(zo+h)+b

—_———
output-specifying code
ii. Fxecute the output-specifying code into a jet near xg:
=axg+ah+b
= [amo+b] <) [a]h

output jet near zg

which gives the local input-output rule near xg:
zo+h —2ENE  ARPINE (w0 + h) — | [G00E8) & (@]

output jet near zg

TEMO 10.3 To evaluate near —3 the function specified by

g —ALPA  ALDA(z) = —32.67z + 71.07



3. Output near xg 233

i. We declare that x is to be replaced by —3 + h

x _ALDA , ALDA(x) = —32.67x + 71.07
r——3+h x<——3+h x+—3+h

which gives

—3+h 224 L ALDA(-3 + h) = —32.67(—3 + h) + 71.07

output specifying code
ii. We execute the output-specifying code into a jet near —3:
= —32.67(—3) — 32.67h + 71.07
= 498.01 — 32.67h + 71.07
= +98.01 + 71.07 — 32.67h

— [ei60081] = [ =s267]

output jet near —3

which gives the local input-output rule near —3:

~3+h A ALpA(-3+h) - | 6008 < [=seeE ] -

output jet near —3

4. When all we want is a feature-sign, though, the above procedure is
inefficient and we will then use the following procedure based directly on
the fact that an affine function is the addition of:

e a [linear function , (See 7?7 on ?7.)

e a  constant function . (See 77 on 77.)

that is:
g AEEINE  AFPINE(z)= cx & _d
—~ ~—~
linear constant
We declare that x is near xg that is that x must be replaced by xg + h:
AFFINE

x ———— AFFINE(zx)=c(xo+h)® _d
—_——— ~~

[ constant

The output of the local input-output rule near x¢ will have to be a jet:
AFFINE
zo+h AENE ApRINB@o+h) =] Je[ ]n
and we want to be able to get any one of the coefficients of the output jet

without having to compute any of the other coefficients. So, what we will do
is to get the contribution of each monomial function to the term we want.

More precisely,
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i. If we want the coefficient of h? in the output jet:
e The [linear| function contributes J€&g
e The |constant function contributes d

so we have:
zo+h AENE ARFINE(@o +h) = [ +d] o [ |n

ii. If we want the coefficient of h!' in the output jet:
e The [linear monomial function contributes @
e The constant monomial function contributes nothing

so we have:
2o+ h AEINE ApPINE(@o+h) = [ ] @]

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input,
we get the local graph near any input, be it bounded or infinity, from the jet
near that input.

PROCEDURE 10.4 To graph near co the function specified

by z 2N L AFPFINE(z) = az + b

1. Get the jet near oo using 7?7 77 on 77
2 near oo —LFINE | AFFINE(z) = [a] B+ [b]

2. Get the local graph near co of each term:

a. Get the graph of the linear term near co by graphing near co
the monomial function [@=a@& using 7?7 77 on 77.

b. Get the graph of the constant term near co by graphing near
oo the monomial function (& = b using 7?7 77 on ?77.
3. Get the local graph near oo of AFFINFE by adding-on the con-
stant term to the linear term using chapter 9.

TEMO 10.4 To graph near oo the function specified by

g —MNA L NINA(z) = —61.03 — 82.47x

1. We get the jet near oo: (See Demo 10.2 on page 229)
z near oo —M 5 NINA(z) = [ - 82.47]:1: 1 [ = 61.03]

2. Get the local graph near oo of each term:
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a. We get the graph of the linear
term by graphing near oo the
monomial function z — [ — 82.47]95

(See Demo 6.24 on page 175)
AOutputs
+00

{-}ar term near oo

Screen \

Input:
+oo$

Offscreen

—00

—00

235

b. We get the graph of the
constant term near oo by graphing
near co the monomial function
z— [ - 61.03] (See Demo 6.24 on
page 175)

AOutputs
+00

Constant term near oo

OF == qr=r=rmrmrmememem -
61,03 |-—im LY

Screen

Offscreen

Input
—0 +oo$

3. We get the local graph near oo of NIN A by adding-on to the graph of the
linear term the graph of the constant term. (See Demo 6.24 on page 175)

AOutputs
+00

Linear term nearco  offscreen
iConstant term near co

0 ....................... jé._
—61.03 —L

Screen

Local graph \
near oo \/

Input:
+oo‘;

—00

PROCEDURE 10.5 To graph near zy the function speci-

AFFINE

fied by the generic global input-output rule + ———

AFFINE(z) =az+b

i. Get the jet near xg of AFFINFE using 7?7 77 on 77
ii. Get the graph of the constant term in the jet near zy namely of

[aw0+b]

iii. Add-on the graph of the linear term in the jet near xy namely of

[
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TeEMO 10.5 To graph near —3 the function specified by
ALDA . ALDA(z) = —32.672 + 71.07

i. We get the jet near —3 of ALDA by evaluating ALDA near —3: (See
Demo 10.3 on page 232)

3+ h—2ERA ALDA(-3+h) - [ 6008 © [=82EE ]

output jet near —3

ii. We get the graph of the constant iii. We get the graph of the linear
term near —3: (See Demo 6.24 on term near —3 is: (See Demo 6.24 on
page 175) page 175)
AOutputs AOutputs
+00]  Constant term ! +00
near—3 —1 :
!
+169.08 :
0 .......... - -.-E ------------- 0 ----------------------------
1
E Screen Screen
E Linear ter|
1 Offscreen near—3 Offscreen
- ' Input - : Input;
—00 -3 0 +oo$ —00 -3 0 +oo$

iv. We add-on the graph of the linear term near —3 to the graph of the linear
term near —3. (See Demo 6.24 on page 175)
AOutputs
+oo|  Constant term !

Local graph
near—3

169.08

Screen

Offscreen

Input:
+oo$
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5 Local Feature-signs

As we saw in 7?7 77 a feature-sign near a given input, be it near oo or near
xg, can be read from the local graph and so all we need to do is:

i. Get the output jet from the global input-output rule. (See ?? on 77
when the given input is co or ?? on ?? when the given input is x¢.)

ii. Get the local graph from the output jet. (See 7?7 on 7?7 when the
given input is co or ?? on ?? when the given input is xg.)

iii. Get the feature-sign from the local graph(See 7?7
However, with a little bit of reflection, it is faster and much more useful to
read the feature-signs directly from the jet in the local input-output rule.
But since, in order for the terms in the jet to be in descending order of sizes,
e In the case of infinity, the exponents of x have to be in descending order.
e In the case of a bounded input, the exponents of h have to be in ascending

order.
we will deal with co and with zg separately.

1. Nearinfinity things are quite straightforward:

PROCEDURE 10.6 To get the feature-signs near oo of the

function specified by = _AFFINE , AFFINE(z)=ax+b

i. Get the local input-output rule near oo:

z near oo — L LINE AFFINE(z) =az+b

= la]oe[o]
output jet near oo
ii. Then, in the jet near oo:
e Get both the Height-sign and the Slope-sign from the linear term
[a]x because the next term [b] is too small to matter.
e Since both the linear term and the constant term have no concav-
ity, AFFINFE has no Concavity-sign near oco.

TEMO 10.6  Get the Height-sign near oo = of the function specified by

JULIE , JULIE(z) = —2x + 6

i. We get the local input-output rule near oo:

z near oo —ZHE  JULIE(z) = —22 + 6

:[—2]x€9[+6]

output jet near co
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ii. We get Height-sign from the linear term [— 2]3: because the constant term

[+ 6] is too small to matter.
Since the linear coefficient —2 is negative, we get that Height-sign JULIE near
00 = (—,+). (Seen from 00.)

TEMO 10.7 Get the Slope-signs near co of the function specified by

o —2ETER | PETER(z) = +3z — 8

i. We get the local input-output rule near co:

z near oo —21ER  PETER(z) = +3z — 8

—[+3]za[-3]

output jet near co

ii. We get Slope-sign from the linear term [Jr 3]x because the constant term

[f 8] is too small to matter (Not to mention that a constant term has no
slope.)

Since the linear coefficient 43 is positive, we get that Slope-sign PET ER near
oo = (", /). (Seen from cc.)

2. In the case of a bounded input, things are a bit more complicated
because the bounded input may turn out to be ordinary or critical for the
height. But it will always be ordinary for the slope.

PROCEDURE 10.7 To get the feature-signs near xy of the

function specified by = _AFFINE , AFFINE(z)=azx+b

i. Get the local input-output rule near x:
v+ h —EEINE  AFFINE(zo + h) = a(zo + h) +b
=axg+ah+b
=axg+b+ah

= [axo + b] @ [a]h

output jet near zo
ii. Then, in the jet near x:

o If x¢ is ordinary, that is if [amo + b] # 0, get the Height-sign from
the sign of the constant term [amo +b] because the next term [a] h
is too small to matter. In other words, Height-sign AF FIN FE near
xo = Height-sign of the monomial function h — axg + b near 0.
But if zq is critical, that is if [aaco —|—b] = 0, the next term, namely
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the linear term [a]h, now does matter even though it is small. In
other words, now Height-sign AFFINE near xo = Height-sign of
the monomial function h — ah near 0.

e Since the constant term has no slope, get the Slope-sign from
the next smaller term in the jet, namely the linear term. In other
words, Slope-sign AFFIN E near xg = Slope-sign of the monomial
function h — ah near 0.

e Since both the constant term and the linear term have no concav-
ity, AFFINFE has no Concavity-sign near x.

TeEMO 10.8 Get the feature-signs near +2 of the function specified by

o LY JULIE(z) = —22 — 6

i. We get the local input-output rule near +2:

124+ h —LIEE L JULIE(+2+h) = —2(+2+h) — 6

= —2(+2)—2h—6
=—4-2h-6
=—4-6-2h

=[-10]e[-2]n

output jet near +2

ii. Then, from the jet:

e We get the Height-sign of JULIFE from the constant term [—10] and since
the Height-sign of the monomial function h — —10 near 0 is {(—, —), we get
that Height-sign JULIFE near +2 = (—, —).

e Since the constant term [—10] has no slope we get Slope-sign from the
next term, namely the linear term [—2]h, and since the Slope-sign of the

monomial function h — —2h near 0 is (\,\), we get that Slope-sign
JULIE near +2 = (\,\).

e Since the constant term [—10] and the linear term [—2h] both have no
concavity, JULIFE has no Concavity-sign near +2.

TeEMO 10.9 Get the feature-signs near —2 of the function specified by

PETER , PETER(x) = +3x + 6
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i. We get the local input-output rule near —2:

—2+h —LETER  PETER(—2+h) = +3(=2+ h) + 6

= 4+3(=2)+3h+6
= —6+3h+6
= —6+6+3h

=[o] e[ +3]n

output jet near —2

ii. Then, from the jet:

e Since the constant term is 0, we get Height-sign of PETER from the next
term, namely the linear term [+3]h even though it is small. Since the
Height-sign of the monomial function h — +3h near 0 is (—, +) we get that
Height-sign PETER near —2 = (—, +).

e Since the constant term [0] has no slope we get Slope-sign from the next
term, namely the linear term [+3]h, and since the Slope-sign of the mono-
mial function h — +3h near 0 is (7, /) we get that Slope-sign PETER
near =2 = (/, /)

e Since the constant term [O] and the linear term [+3h] both have no con-
cavity, PETER has no Concavity-sign near —2.

EVERYTHING IN THE SOURCE AFTER THIS BELONG ELSEWHERE
AND IS COMMENTED OUT THREE TIMES HERE.
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Affine Functions: Global
Analysis

Smoothness, 241 e The Essential Question, 242 e Slope-sign,

244 e Extremum, 245 e Height-sign, 245 e Bounded Graph, 246 e 0-Slope
Location, 248 e Locating Inputs Whose Output = y, 248 e Locating
Inputs Whose Output > yy Or < yp, 248 e Initial Value Problem,

249 e Boundary Value Problem, 251 .

In contrast with local analysis which involves only inputs that are near a
given input, be it oo or xq, global analysis involves, one way or the other, all
inputs. We will see that, while the local analysis of all algebraic functions
will turn out to remain essentially the same, the global analysis of each kind
of algebraic functions will turn out to be vastly different.

In fact, with most functions, we will be able to solve only some global
problems and mostly only approximately so. Affine functions, though, are
truly exceptional in that we will be able to solve all global problems exactly.

Anyway, the first step in investigating the global behavior of a kind of
algebraic function will always be to do the general local analysis of that
kind of algebraic function, that is the local analysis of the generic algebraic
function of that kind near oo and near a generic input xg.

1 Smoothness

Given the function specified by the generic global input-output rule

g —AEEINE  APFINE(z) = az +b

241
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the generic local input-output rule is:

2o+ h AN ARRINE(xo + h) = |00 o ] »

jet near zg

1. The constant term in the jet near zg, namely [amo + b], is just the
output at zg. (See ?? on ??7). In other words:

THEOREM 11.1 The function which outputs at the given input the
constant coefficient in the jet of a given affine function near a given
bounded input is the given affine function itself.

EXAMPLE 11.1. Observe that in the local input-output rule in Demo 10.3
on page 232 the constant coefficient in the jet near —3, namely [£169.08, is
just the output at—3. (See Demo 12.1 on page 255)

2. Since the linear term in the jet of an affine function near xg, namely
[a]h, is small, we have:

THEOREM 11.2 Approximate output near x( . For affine func-
tions, inputs near xg have outputs that are near the output at xg.

which, with the language we introduced in 77?7, we can rephrase as:

THEOREM 77?7 (Restated) 7?7 All affine functions are continuous
at all inputs.

(In fact, we will see that this will also be the case for all the functions which
we will be investigating in this text.)

3. The function which outputs the linear coeflicient in the jet of a given
affine function near a given input is called the first derivative of the given
function.

2 The Essential Question

As always when we set out to investigate any kind of functions, the first
thing we must do is to find out if the offscreen graph of an affine function
consists of just the local graph near oo or if it also includes the local graph
near one or more oo-height inputs.

In other words, we need to ask the Essential Question:
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e Do all bounded inputs have bounded outputs
or

e Are there bounded inputs that are oo-height inputs, that is are there
inputs whose nearby inputs have unbounded outputs?

Now, given a bounded input x, we have that:
e since a is bounded, ax is also bounded
e b is bounded

and so, altogether, we have that ax 4+ b is bounded and that the answer to
the Essential Question is:

THEOREM 11.3 Approximate output near co. Under an affine
function, all bounded inputs return bounded outputs.

and therefore

THEOREM 11.4 Offscreen Graph. The offscreen graph of an
affine function consists of just the local graph near co.

EXISTENCE THEOREMS

The notable inputs are those

e whose existence is forced by the offscreen graph which, by the Bounded
Height Theorem for affine functions, consists of only the local graph
near oQ.

e whose number is limited by the interplay among the three features
Since polynomial functions have no bounded oco-height input, the only

way a feature can change sign is near an input where the feature is 0. Thus,

with affine functions, the feature-change inputs will also be 0-feature inputs.
None of the theorems, though, will indicate where the notable inputs

are. The Location Theorems will be dealt with in the last part of the

chapter.

EXAMPLE 11.2. When somebody has been shot dead, we can say that
there is a murderer somewhere but locating the murderer is another story.
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3 Slope-sign

Given the affine function AFFIN E,, that is the function specified by the

global input-output rule

o —2EEINE  APFINE(z) = az + b

recall that when x is near co the Slope-sign Near co Theorem says that:
e When a is + , Slope-Sign|, ,c.r o = (/5.
e When a is — , Slope-Sign|, , .. .o = (N5 \)

1. Since the slope does not changes sign as = goes through oo from the
left side of oo to the right side of oo, the slope need not change sign as x
goes across the screen from the left side of co to the right side of co so there
does not have to be a bounded Slope-sign change input:

EXAMPLE 11.3. Given an affine function whose offscreen graph is

Output Ruiey
+o0 /
oon

Mercator view Magellan view
we don't need a bounded slope-sign change input to join smoothly the local
graphs near oo:

Output Rulep
+o0

Mercator view Magellan view

2. In fact, not only does there not have to be a bounded slope-sign
change input, there cannot be a bounded slope-sign change input since the
local linear coefficient is equal to the global linear coefficient a and the slope
must therefore be the same everywhere:

THEOREM 11.5 Slope-Sign Change Non-Existence . An affine
function has no bounded Slope-Sign Change input.
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3. Another consequence of the fact that the local slope does not depend global slope
on xg, and is thus the same everywhere, is that it is a feature of the function
AFFINE, itself and so that the function AFFINE, ; has a global slope
specified by the global linear coefficient a.

4. Moreover, the slope cannot be equal to 0 somewhere because the slope
is equal to a everywhere. So, we also have:

THEOREM 11.6 0-Slope Input Non-Existence. An affine func-
tion has no bounded 0-slope input.

4 Extremum

From the optimization viewpoint, an affine function has no extremum input,
that is no bounded input whose output would be larger (or smaller) than
the output of nearby inputs.

THEOREM 11.7 Extremum Non-existence. An affine function
has no bounded local extremum input.

5 Height-sign

Given the affine function AFFIN E,, that is the function specified by the
global input-output rule

AFFINE _, AFFINE(z) = az + b

recall that when z is near oo the Height-sign Near co Theorem says
that:

e When a is + , Height-Sign|, oo oo = (+,—)

e When a is — , Height-Sign|, ,car oo = (= +)

1. Since the height changes sign as = goes from the left side to the right side
of oo across oo, the height must also change sign as x goes from the left
side to the right side of co across the screen so there has to be at least one
bounded Height-sign change input:

EXAMPLE 11.4. Given the affine function whose offscreen graph is
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Output Rulep
+o0
Offscreen Space

Input
Ruler

Mercator view Magellan view
there has to be a bounded height-sign change input:

Output Rulef
+oo

Mercator view Magellan view

2. On the other hand, an affine function can have at most one 0-height
input because, if it had more, it would have to have 0-slope inputs in-between
the 0-height inputs which an affine function cannot have. So, we have:

THEOREM 11.8 0-Height Existence. An affine function has
eractly one bounded 0-height input and it is a 0-height input:

LHeight-sign change = L0-height

6 Bounded Graph

There are two ways to look at the shape of the bounded graph.

1. As a consequence of the Bounded Height Theorem for affine func-

tions, the offscreen graph consists only of the local graph near co and we can
obtain the forced bounded graph by extrapolating smoothly the local graph
near oo.
There remains however a question namely whether the extrapolated bounded
graph is straight that is has no concavity. However, affine functions have
no concavity and that settles the mater: the local graph near —oo and the
local graph near +o0o must be lined up and can therefore be joined smoothly
with a straight line.
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2. In the case of affine functions, it happens that we can also obtain the
bounded graph by interpolating local graphs near bounded inputs:
We start from the local graphs near a number of bounded points as follows:

Output’

|
Ruler ;Offscreen Space

We construct local graphs near, say, b
three different bounded inputs, x1, xo, Sphce
x3. They would look something like this: P

! j ! Input
X1 X2 X3 Ruler

. . . ggfgfm 3 Offscreen Space
However, this is not possible because ‘
that would mean that inputs such as x4 iSpace
would have two outputs: | i
— 3
,,,,,,,,,,,,,,,,,,,,, ,,:,4,,,,,,,,,,,,,
Input
x‘4 Ruler
As a result, the local graphs near Outpuf Offscreen Space
uler

bounded inputs must all line up and so
the bounded graph must be a straight

line: /

Space

Input
Ruler

Of course, the bounded graph must line up with the local graph near oo as,
otherwise, there would have to be a jump in the transition zone.

LOCATION THEOREMS

Previously, we only established the existence of certain notable features of
affine functions and this investigation was based on graphic considerations.
Here we will investigate the location of the inputs where these notable fea-
tures occur and this investigation will be based on input-output rule consid-
erations.
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7 0-Slope Location

We saw earlier that affine functions cannot have a 0-slope input. On the
other hand, since the slope is the same everywhere, it is a global feature of
the function itself and we have:

THEOREM 11.9 Global Slope-sign. Given the affine function
AFFINE,;,

e When a is positive, Slope-sign AFFINE = /.

e When a is negative, Slope-sign AFFINFE =\

8 Locating Inputs Whose Output = yy

The simplest global problem is, given a number yg, to ask for the input
numbers for which the function returns the output yg.

PROCEDURE 11.1 Find the input(s), if any, whose output
under the function specified by

APFINE _, AFFINE(z) = az + b

Solve the equation axz + b = yp (See 7?7 on ?7.)

9 Locating Inputs Whose Output > yo Or < yg

Given the affine function AFFINE,;, we are now ready to deal with the
global problem of finding all inputs whose output is smaller (or larger) than
some given number .

EXAMPLE 11.5. Given the inequation problem in which
e the data set consists of all numbers
e the inequation is
r = —13.72

we locate separately.

i. The boundary point of the solution subset of the inequation problem is
the solution of the associated equation:

x=-—13.72

which, of course, is —13.72 and which we graph as follows since the boundary
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point is a solution of the inequation.

{\ Boundary point

L >
—00 2 400
el
ii. The interior of the solution subset, that is the solution subset of the
associated strict inequation

x> —13.72
i. The boundary point —13.72 separates the data set in two intervals, Sec-

tion A and Section B:
{\ Boundary point

>
—00 \G 400
. > .
Section A \f < t/ Section B

ii. We then test each interval:

e We pick —1000 as test number for Section A because, almost without a
glance we know —1 000 is going to be in Section A and because it is easy
to check in the inequation: we find that —1 000 is a non-solution so that,
by Pasch Theorem, all numbers in Section A are non-solutions.

Non-solufions {\ Boundary point

® >
—00 \/\_,7 +CD
. T2, .

Section A < Section B
e We pick +1000 as test number for Section B because, almost without a
glance we know +1 000 is going to be in Section B and because it is easy
to check in the inequation: we find that 41000 is a solution so that, by

Pasch Theorem, all numbers in Section A are solutions.

Non-solutions Solutions

—00 \<P 400
. > .
Section A \f < t/ Section B

10 Initial Value Problem

An Initial Value Problem asks the question:
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What is the input-output rule of a function F' given that:

e The function F is affine

e The slope of the function F' is to be a given number a

e The output returned by the function F' for a given input x¢ is to be a
given number yyg.

EXAMPLE 11.6. Find the global input-output rule of the function K ATE
given that it is affine, that its slope is —3 and that the output for the input +2
is +5.

We use all three given pieces of information:

i. Since we are given that KATFE is an affine function, we give temporary
names for the dilation coefficient, say a, and for the constant term, say b, and
we write the global input-output rule of KATE in terms of these names:

g — LA Bar KATE,p(x) =ax +b
ii. By the Local Slope Theorem, the slope is equal to the dilation coefficient:
—-3=a
which give the equation a = —3
iii. Since the output for the input +2 is +5, we write
KATEqp(2)],._, 9 = +5
ar +bl,._ ., =+5
a(+2) +b=+5
which give the equation 2a + b = +5
iv. So we must solve the system of two equations for two unknowns a and b:

a=-—3
AND
2a+b=+5
This kind of system is very simple to solve since we need only replace a by —3
in the second equation to get the equation:

2(=3)+b=+5
which we solve using the REDUCTION METHOD:
—6+b=+45
—6+0+6=+5+6
b=+11
v. So, the global input-output rule for KATE is

KATE_
x S KATE 3 11(z) = =3z + 11
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11 Boundary Value Problem

A Boundary Value Problem asks the question:
What is the input-output rule of a function F', given that:

e The function F'is affine

e The output returned by the function F for a given input z; is to be a
given number y;.

e The output returned by the function F for a given input x5 is to be a
given number ypo.

In other words, we want to find an affine function F' such that:

F
s =
BorH{ ! P (1) = w1
x9 — F(x2) = yo

EXAMPLE 11.7. Find the global input-output rule of the function DAV E
given that it is affine, that the output for the input +2 is —1 and that the
output for the input —4 is —19.

We use all three pieces of information that we are given:

i. Since we are given that DAV E is an affine function, we give temporary
names for the dilation coefficient, say a, and for the constant term, say b, and
we write the global input-output rule of DAV E in terms of these names:

AV E,
g DA, DAV Ea,b(x) =ax+b

ii. Since the output for the input +2 is —1 we write:

DAVEqp(x)|,_ o =—1
ax +bl,._, ,=—1
a(+2)+b=-1

which give the equation +2a +b = —1
ili. Since the output for the input —4 is —19 we write:
DAVE,y(x)|,._ ,=—19
ar +b|,._ o =—19
a(—4)+b=-19
which give the equation —4a +b = —19
iv. So we must solve the system of two equations for two unknowns a and b:
+2a+b= -1
{—4@ +b=-19
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This kind of system is a bit more complicated to solve but since b appears in
both equations, we replace one of the two equations, say the second one, by
“the first one minus the second one":

+2a+b=-1
[+2a +b] — [~4a + b] = [-1] — [-19]
This gives us:
+2a+b= -1
+2a+b+4a—-b=—-1+19
that is
+2a+b=-1
+6a = +18
that is
+2a+b= -1
+6a  +18
+6  +6
that is
+2a+b=-1
a=+3

and now we replace in the first equation a by +3:
{+2a +b=—1,_.4

a=+43
that is
+2(+3) +b=—1
a=+3
that is
+64+b=-1
a=+3

and we reduce the first equation
+6+b—-6=-1—-6
a=+3

b=-T7
a=-+3
v. So the global input-output rule of DAV E is

A _
w2 —PVEST  DAVE,s o(z) = 43¢ — T

which gives us, finally
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Chapter 12

Quadratic Functions: Local
Analysis

Output at xg, 255 @ Output near co, 256 e Output near xy, 258 o Local
graphs, 261 e Local Feature-signs, 266 .

Quadratic functions are specified by global input-output rules like the
generic global input-output rule:

QUADRATIC QUADRATIC(z) = ax ™ @ ba™ @ ca”

output-specifying code

which we usually write
= ar’+br+c
—_———
output-specifying code
where a, called the quadratic coefficient, b, called the linear coefficient,

and ¢, called the constant coefficient, are the bounded numbers that spec-
ify the function QUADRATIC.

EXAMPLE 12.1. The quadratic function RIN A specified by the quadratic
coefficient —23.04, the linear coefficient —17.39 and the constant coefficient
+5.84 is the function specified by the global input-output rule

RINA _ RINA(z) = -23.04 2% —17.392 +5.84
~—— N——

——
quadratic coeff. linear coeff. constant coeff.

It is worth noting again that

253
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NOTE 12.1 The terms in the global input output rule need not be
written in order of descending exponent. This is just a habit we have.

EXAMPLE 12.2. The function specified by the global input-output rule

o —PIBL  BIBI(z) = 4+21.0322 — 31.392 + 5.34

could equally well be specified by the global input-output rule

r —2BL_ BIBI(x) = +5.34 + 21.032% — 31.39

or by the global input-output rule

x —28L  BIBI(z) = —31.39z + 5.34 + 21.032°

We now introduce some standard terminology to help us describe very
precisely what we will be doing. The output-specifying code of the affine
function specified by

_AFFINE , QUADRATIC(z) = az®+bx +c
———

output-specifying code
consists of three terms:
e az? which is called the quadratic term.
e bx which is called the linear term.
e ¢ which is called the constant term,

and there is of course also

e bx + ¢ which is called the affine part

EXAMPLE 12.3. The output-specifying code of the function specified by
the global input-output rule
RINA _, RINA(z) = -23.04 2% —31.392 +5.84
——

—— ——
quadratic coeff. linear coeff. constant coeff.

consists of three terms:
= —23.042%> —-31.39z +5.34
e N N —

quadratic term linear term constant term

LANGUAGE 12.1 Whether we look upon c as the constant coefficient,
that is as the coefficient of 20 in the constant term cz® or as the constant
term caV itself with the power ¥ “going without saying” will be clear
from the context.
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1 Output at xg

1. Remember from section 1 that zg is a generic given input, that is
that xg is a bounded input that has been given but whose identity remains
undisclosed for the time being.

2. We will use

PROCEDURE 12.1 To evaluate at xy the function specified
by o —2UAPEATIC O ADRATIC(2) = az? + bz +

i. Declare that x is to be replaced by zg

N QUADRATIC | 17 A DRATIC(z) =az’ +br+c
4T T4xQ xT4xTQ
which gives:
o QUADRATIC N QUADRATIC(xo) _ a$02 +bxg+c

S
ii. FEzecute the output-specifying code into an output number:
= axd + bxo + ¢
which gives the input-output pair
(xo, ax% + bxg + c)

DEMO 12.1 To evaluate at —3 the function specified by

_AVIA  AVIA(z) = +21.0322 — 32.67z + 71.07
i. We declare that x is to be replaced by —3

x _AVIA L AVIA(z) = +21.0322 — 32.67z + 71.07
r——3 T——3 T——3
which gives
—3 AL L AVIA(-3) = +21.03(—3)2 — 32.67(=3) + 71.07

output specifying code
ii. We execute the output-specifying code into an output number:
+189.26 ¢ +98.01 & +71.07

output number at —3

= +358.34

output number at —3
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which gives the input-output pair

(=3 , +358.34)
——

output number at —3

3. However, as already discussed in 7?7 ?7 and as has already been the
case with monomial functions and affine functions, instead of getting the
output number returned by a quadratic function at a given input, we will
usually want all the outputs returned by the quadratic function for inputs
near that given input. So, instead of getting the single input-output pair at
the given input, we will get the local input-output rule with which to get all
the input-output pairs near the given input.

2 Output near oo

As already discussed in 7?7 77, in order to input a neighborhood of co, we
will declare that “x is near co” but write only = after that. This, again, is
extremely dangerous as it is easy to forget that what we write may be TRUE
only because x has been declared to be near oco.

1. We will ezecute the output-specifying code, namely az? + bx + ¢, into
an output jet, that is with the terms in descending order of sizes, which,
since here z is large, means that here the powers of z must be in descending
order of exponents. We will then have the local input-output rule near oo:

QUADRATIC

Z near oo QUADRATIC(xz) = Powers of x in descending order of exponents
output jet near oo
EXAMPLE 12.4. Given the function specified by the global input-output
rule
o —BA L RIBA(z) = —61.03 — 82.47x + 45.0322

To get the output jet near co, we first need to get the order of sizes.

i. —61.03 is bounded

ii. —82.47 is bounded and =z is large. So, since bounded - large = large,
—82.47 -z is large

iii. +45.03 is bounded and =z is large. So, since bounded - large = large,
+45.03 - x is large too. But large - large is larger in size than large so

+45.03 - 22 is even larger than —82.47 -

So, in the output jet near 0o, +45.0322 must come first, —82.47x comes second
and —61.03 comes third
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Then, we can write the local input-output rule near oo:
2 near oo —224, RIBA(z) = +45.0322 — 82.47z — 61.03

output jet near oo

2. So, we will use:

PROCEDURE 12.2 To evaluate near oo the function specified

by o 2UAPRATIC O ADRATIC(2) = az? + bz +
i. Declare that x is near oo :
x A B ) QUADRATIC(z) = az’ + bz +c
T near oo X near oo X near oo
which gives:
z near oo —2UAPRATIC QUADRATIC(z) = aa’®+bx+c

—_——
output-specifying code

ii. Fzecute the output-specifying code into an output jet:

= [a] 22 @ [@] = o ]

output jet near co

which gives the local input-output rule near oo:

x near co —2LAPRATIC QUADRATIC(z) = [a] 2 @ [b] z @ [c]

output jet near co
(The output jet in the local input-output rule near co looks the same
as the output-specifying code in the given global input-output rule but
that is only because here the output-specifying code happened to be
written in descending order of exponents.)

DEMO 12.2 To evaluate near co the function specified by

o S L KINA(z) = —61.03 + 51.3222 — 82.47x

i. We declare that x is near oo :

z _KINA L KINA(x) = —61.03 + 51.3222 — 82.47x
which gives:

a near 0o — 4 KINA(z) = —61.03+ 51.32 2 2 — 82.47 &

output-specifying code
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ii. We execute the output-specifying code into an output jet:
= [#5132) «> o [E82ME] « o [Em03]
which gives the local input-output rule near oo :

x near co N KINA(x) = [#5182] « © [E825) = o [F6103]

output jet near oo

(The output jet in the local input-output rule near oo does not look the same
as the output-specifying code in the global input-output rule because here the
output-specifying code happened not to be in descending order of exponents.)

3. The reason we use jets here is that the term largest in size is the
first term so that to approximate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands
for “something too small to matter here”. In other words,

THEOREM 12.1 Approximate output near oco. For quadratic
functions, what contributes most to the output near oo is the highest

degree term in the output jet near oo:

z near co —2/APRATIC | QUADRATIC(z) = [ a ]1:2 +[...]

EXAMPLE 12.5. Given the function specified by the global input-output

rule
_KINA , KINA(z) = —61.03 + 51.3222 — 82.47x

near oo we will often just use the approximation
KINA 2
x near oo ———— KINA(x) = [+51.32] z° &[]

3 Output near xq

We now deal with the output of the neighborhood of some given bounded
input xg.

1. In order to input a neighborhood of a given input zy we will declare
that x < zg @ h that is that x is to be replaced by zg @ h. As a result, we
will have to compute (z¢ ® h)? for which we will have to use an addition
formula from algebra, namely THEOREM 777 on page .

2. We can then ezecute the input-output specifying phrase into an output
jet that is with the terms in descending order of sizes which here, since h
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is small, means that the powers of h will have to be in ascending order output jet near o
of exponents. We will then have the local input-output rule near the given
input:

h M QUADRATIC (zg @ h) = Powers of h in ascending order of exponents

output jet near oco

o D

We will therefore use:
PROCEDURE 12.3 To evaluate near x; the function specified
by o —2UAPEAIC O ADRATIC(2) = az? + bz +

i. Declare that x is near zg: (So z is to be replaced by zg+ h .)

QUADRATIC , U ADRATIC!(x) ‘ = az? +br +c
zx0+h

T+x0+h x4—xo+h

which gives:

wo + b LUAPEAIC, AU ADRATIC (g + h) = a(zo + h)? + b(zo + k) + ¢

output-specifying code
ii. Ezecute the output-specifying code into an output jet:

:a(x(2)+2xoh+h2>+b(xo+h)+c
= lazg © REEN" © ah’

® bxg Db A

SPRN

= [a:z;(2)+b$0+c] @[2@a}0+b]h€9 [a]h2

output jet near zg

which gives the local input-output rule near xg:
20+ h ARG, OU ADRATIC(wo + h) = [[azg + bzo + ¢ | & |BaE0EE] 1 o [ja] »2

output jet near zo

DEMO 12.3 To evaluate near —3 the function specified by

ARNA . ARNA(z) = —32.67z + 71.07 + 81.2622

i. We declare that  is near —3 : (So « is to be replaced by —3 +h .)

_ARNA . ARN A(z) — —32.67x + 71.07 4 81.26>

z—3+h x—3+h z——3+h
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which gives

3+ h 2N S ARNA(=3+ h) = —32.67(=3 + h) + 71.07 + 81.26(=3 + h)*

output specifying code
ii. We execute the output-specifying code into an output jet:
= —32.67(—3+ h) + 71.07 4 81.26 ((—3)2 +2(=3)h + h2)
= —32.67(—3) — 32.67h
+ 71.07
+ 81.26(—3)2 + 81.26(2)(—3)h + 81.26h2

= +98.01 & —32.67 h

@ +71.07

@ 473134 o [B48756) 1 « [H8126]
- [ +98.01 + 71.07 + 731.34 ] ® [_]h o [-]h2
- [ 4£900.42 ] @ [_]h e [-]h2

output jet near —3

which gives the local input-output rule near —3 :

34 h —ARNA L URNA(—3+ h) = [ 5000 | - [si0E] - - [EEsEE] 2

output jet near —3

3. When all we want is a feature-sign, though, the above procedure is
very inefficient and we will then use the following procedure based directly
on the fact that a quadratic function is the addition of:

o o ARG, (52 7* on 7?)
o a [linear function, (See ?? on ??.)

e a constant function . (See 7?7 on ?77.)

that is:
QUADRATIC

N _ 3.2
QUADRATIC(z) = &x/ ® cx @ &l/

~~
- - constant

We declare that = is near xg that is that x must be replaced by xg + h:
QUADRATIC O\ ADRATIC(z) = b(z0 + h)® @ ¢ (zo + h) @ N>
- - constant

The output of the local input-output rule near xy will have to be a jet:

p QUAPRATIC, OUADRATIC(o+h) = || Jre[ ]w?

xo +
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and we want to be able to get any one of the coefficients of the output jet
without having to compute any of the other coefficients. So, what we will do
is to get the contribution of each monomial function to the term we want.
This requires us to have the addition formula at our finger tips:

More precisely,

a.

i. If we want the coefficient of h? in the output jet:

e The [linear function| contributes cxo
e The _ contributes .

so we have:
UADRATIC
o + b QUAPRATIC,

QUADRATIC(zo+ h) = 0] + @ + @] & [ |ne | |2

ii. If we want the coefficient of h' in the output jet:

e The contributes @
e The contributes nothing
so we have:

UADRATIC
zg + h LAPRATIC,

QUADRATIC (o + h) = [ ] [-+I]h@[ ] ’

iii. If we want the coefficient of h? in the output jet:

e The _ contributes @

e The contributes nothing
e The contributes nothing

so we have:
L QUADRATIC
—>

QUADRATIC(zo+h) = | e[ |ne[m]r

4 Local graphs

Just the way we get the plot point at a given bounded input from the output
number at that input, we get the local graph near any given input, be it
bounded or infinity, from the output jet near that input.
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PROCEDURE 12.4 To graph near co the function specified
by « 2UALPEAIC, O ADRATIC(2) = az? + bz +

1. Get the local input-output rule near oo using 7?7 on ?7:

z near oo —2APRATIC QUADRATIC (z) = [a] 2 @ [b] z D [c]

output jet near co

2. Get the local graph near oo of each term:

a. For the quadratic term, graph near oo the monomial function
v — [j@] «* (See 77 on 77.)

b. For the linear term, graph near co the monomial function z —
[ b ]ZL‘ (See 7?7 on ?7.)

c. For the constant term, graph near oo the monomial function
x — [c](See ??o0n 77.)
3. Get the local graph near oo of QUADRATIC by adding to the
local graph of the quadratic term the local graph of the linear term
and the local graph of the constant term.(See chapter 9)

DEMO 12.4 To graph near co the function specified by
g —EINA L KINA(z) = —61.03 + 51.322% — 82.47z

1. We get the local input-output rule near co: (See Demo 12.2 on page 257)

z near oo — A KINA(z) = [ +51.32 ]x2 + [ —82.47 ]x + [ —61.03 ]

output jet near oo

2. We get the local graph near oo of each term:



4. Local graphs 263

b. For the graph of the linear

term, we graph the monomial
—82.47 ];v near oo

a. For the graph of the quadratic

term, we graph the monomial
function x — | +51.32 ]332 near 0o function x — [

(See Demo 6.24 on page 175) (See Demo 6.24 on page 175)

AOutputs AOutputs
+00 Quadrat|c term rear +00 {ear term near co
O .............. 0 ............................ -
Screen Screen \
—o0 Offscreen —0 Offscreen
Input: Input:
—00 +oo§> —00 -4—00i

c. For the graph of the constant
term, we graph the monomial
function z — || —61.03 ] near oo

(See Demo 6.24 on page 175)
AOutputs
+00

Constant term near oo

OF - =-=r=emmimimimim
Screen
_0 Offscreen
Input:
+OO$

)
3. We get the local graph near co of KINA by adding to the local graph of
the quadratic term the local graph of the linear term and the local graph of the

constant term. (See Demo 6.24 on page 175)
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AOutputs
+00

P /

—61.03 |
Screen
Local graph neas
Offscreen

—00

Input
—00 +oo$

PROCEDURE 12.5 To graph near zy the function specified
by « —2UAPEATIC | OUADRATIC(2) = az® + bz + ¢

1. Get the local input-output rule near xy using 7?7 on ?7:

xo + h LA, QUADRATIC (o + h) = [ aad + bxo + ¢ | « [[2dommb]| 1 o (@) 2

output jet near zg

2. Get the local graphs near 0 of each term:

a. For the constant term, graph near 0 the monomial function
T — [a$g+bmo+c]. (See 7?7 on ?7.)

b. For the linear term, graph near 0 the monomial function
T — [ 2az9 + b ]x (See 7?7 on ?77.)

c. For the quadratic term, graph near 0 the monomial function
x — [a ]xQ. (See 7?7 on ?7.)
3. Get the local graph near xg of QUADRATIC by adding to the
local graph of the constant term the local graph of the linear term,
the local graph of the quadratic term.

DeEmMO 12.5 To graph near —3 the function specified by

z —AENA , ARNA(z) = —32.67 + 71.07 + 81.2622

1. We get the local input-output rule near —3. (See Demo 12.3 on page 259):

34 h AN L ARNA(-3 + n) = [[H600:42 ] o [ E5E0E ] o [ESiEE] 2

output jet near —3

2. We get the local graph near —3 of each term:
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a. For the constant term, we b. For the linear term, we graph
graph near 0 the monomial function near O the monomial function
T — [ +900.428 ] (See Demo 6.24  z — [ ~519.63 ]x (See Demo 6.24
on page 175) on page 175)
AOutputs AOutputs
+o0|  Constant term ! +00 !
near—3 ! .
1 1
7 ; ;
+169.08] : !
1 1
N R olbesdnn . e
E ;
E Screen ' Screen
1 1
; Linear terl ;
1 Offscreen near—3 2 OfisEr=e
—00 s —0 Py
I Input
—00 -3 0 +oo$

1 Input.
—0 -3 0 +ooi

c. For the quadratic term, we
graph near 0 the monomial function
x — [ +81.26 ]3:2 . (See Demo 6.24

on page 175)

AOutputs
+00
Ob-ome - et 4
"\ Screen
Quadratic
term near3 — Offscreen
—00 |
H Input:
—00 -3 0 +oo$

3. We get the local graph near —3 of ARN A by adding to the local graph of
the constant term the local graph of the linear term and the local graph of the
quadratic term. (See Demo 6.24 on page 175)
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b Local grapt
f— near—3
i

0.428 \

AOutputs
+00

Screen

Offscreen

Input:
+OO$

5 Local Feature-signs

As we saw in 7?7 77, a feature-sign near a given input, be it near oo or near
xo, can be read from the local graph and so we already know how to proceed:

i. Get the local input-output rule near the given input (See 7?7 on 77?7
when the given input is co or 7?7 on ?? when the given input is zg.)

ii. Get the local graph from the local input-output rule (See ?? on ??.)

iii. Get the feature-sign from the local graph. (See 77 77.)

However, things are in fact much simpler: Given an input, be it co or a

bounded input g, to get a required feature-sign near that given input, we
look for the term in the output jet near that input that

i. Has the required feature.
and

ii. Is the largest-in-size of all those terms with the required feature.

So, as we will now see, we usually need to get only one term in the output
jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a quadratic
function, the first term in the output jet near oo is both the largest-in-size
and a regular monomial so that it has all three features:
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PROCEDURE 12.6 To get the feature-signs near co of the
QUADRATIC , QUADRATIC(z) =

function specified by =z
ar? + bz +c

i. Get the approximate local input-output rule near oo:

z near oo — 2 APRATIC QUADRATIC(z) = [a]x2 ® [b]x ® [c]

output jet near co
2
= [a]x & [...]
approximate output jet near co
ii. Then, in the approzimate output jet near oo:

o Get the Height-sign, the Slope-sign and the Concavity-sign all
from the quadratic term [a]x2 because the next terms, [b]az and

[c] are too small to matter. (Not to mention the fact that a linear
term has no concavity and a constant term has neither concavity
nor slope.)

TEMO 12.1 L et CELIA be the function specified by

CELIA , CELIA(z) = —22° + 63z — 155

Get Height-sign near oco.

i. We get the local input-output rule near oc:

o near oo — A, CELIA(z) = —22% + 63z — 155

=[-2)?e[+63]ee [~ 155]

output jet near co

ii. We get Height-sign from the quadratic term [72]x2 because the linear term
[ + 63]3: and the constant term [ — 155] are too small to matter.

ili. Since the quadratic coefficient [— 2] is negative, we get that Height-sign
CELIA near co = (—,—). (Seen from c0.)

TEMO 12.2 L et PETER be the function specified by the global input-output

rule
DIFTER , DIETER(z) = +3.0322 — 81.67x + 46.92

Get Slope-signs near oco.
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i. We get the local input-output rule near co:

z near oo —2EER L DIETER(z) = +3.032% — 81.672 + 46.92

=[+303)? & [ - 8167]c & [+ 46.92]

output jet near co

ii. We get Slope-sign from the quadratic term [+ 3.03]1’2 because the linear

term [f 81.67] is too small to matter and the constant term has no slope.
Since the linear coefficient +3 is positive, we get that Slope-sign DI ETER near
oo =(/,/). (Seen from cc.)

2. Near a bounded input though, things are a bit more complicated:

i. The first term in the output jet is usually the largest-in-size so that it
gives the Height-sign. However, the first term usually has neither Slope nor
Concavity because the first term is usually a constant term.

ii. The second term in the output jet is usually too smalll-in-size to change
the Height-sign as given by the first term but it is usually the largest-in-
size term that can give the Slope-sign. However, the second term has no
Concavity because the second term is usually a linear term.

iii. The third term in the output jet is usually too smalll-in-size to change
the Height-sign given by the first term and the Slope-sign given by the second
term but it is usually the only term that can give the Concavity-sign.

So we can usually read each feature-sign directly from the appropriate term
in the output jet - keeping in mind that the exceptional monomial functions
do not have all the features.

However, near a bounded input, the given bounded input may turn out to
be critical for the local feature:

i. If the constant term in the output jet is 0, then the term which gives the
Height-sign can be either the linear term or even the quadratic term if the
linear term is 0. The bounded input is then said to be critical for the
Height.

ii. If the linear term in the output jet is 0, then the term which gives the
Slope-sign is the quadratic term. The bounded input is then said to be
critical for the Slope.

So, we usually need to compute only one coefficient in the output jet. But
if the given bounded input turns out to be critical for that feature, then we
need to compute the next coefficient: So we use
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PROCEDURE 12.7 To get the feature-signs near z; of the

function specified by = rapEenie, QUADRATIC(z) = ax?® +

br + ¢

i. Get the local input-output rule near xg:
wo + h —SUAPRATIC A7 ADRATIC (w0 + h) = a(zo + h)? + b(zo + ) + ¢
:a(m%—i-Za:oh—i-hQ) +b(xo+h)+c

— [ax% + bl’o + C] D [20$0 + b]h D [CL] h2

output jet near xo

ii. Then, in the output jet near xg:

o Get the Height-sign from the constant term [aw% + bxg + c] (The
linear term and the quadratic term are too small to matter.)
If the constant coefficient is 0, get the Height-sign from the linear
term [ano + b]h. (The quadratic term is too small to matter.)
If the linear coefficient is 0, get the Height-sign from the quadratic
term [a] h?.

e Since the constant term has no slope, get the Slope-sign from the
linear term [Qa:no + b]h.
If the linear coefficient is 0, get the Slope-sign from the quadratic
term [a] h?

e Since both the constant term and the linear term have no concav-
ity, we get Concavity-sign from the quadratic term..

TEMO 12.3 L et ARN A be the function specified by the global input-output

rule
ARNA . ARNA(z) = —32.672 + 71.07 + 81.262>

Get the feature-signs near —3.
i. We get the local input-output rule near —3 as in Demo 12.3 on page 259:

3+ h —2BNA L ARNA(=2+ h) = —32.67(=3 + h) + 71.07 + 81.26(—3 + h)?

output specifying code

= [ +900.428 ] o [ —519.63 ]h o [ +81.26 ]h2

output jet near —3

ii. Then, from the jet:

e Since the constant term +900.428] is positive, we get that Height-sign
ARN A near =3 = (+, +).
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e Since the linear term [-]h is negative. we get that Slope-sign
ARNA near =3 = (\,\\)

e Since the quadratic term [-]h2 is positive, we get that Concavity-
sign ARN A near —3 = (U, U)



Chapter 13

Quadratic Functions: (lobal
Analysis

The Essential Question, 272 e Concavity-sign, 274 e Slope-sign,
275 o Extremum, 276 e 0-Concavity Location, 277 e 0-Slope Location,
277 o Extremum Location, 278 e 0-Height Location, 279 .

The “style” of this chapter is going to be very different from the “style”
of the other chapters because we want to take the occasion to give the
reader an idea of what happens when a research mathematician is facing
a “new problem”, that is a problem that no one else has solved before so
that s/he cannot just look somewhere or ask someone “how to do it”. So, in
this chapter, instead of showing how to determine the global behavior of a
quadratic function z —— q(x) = ax® + bz + ¢, we will pretend that this is
a “research problem”.

The first thing we do is to think about the problem itself: What do we
mean by “global behavior”? Exactly what are we after? The idea is to see
what a precise statement of the problem might suggest.

One answer might be that “we want to know everything there is to know
about a quadratic function”. But that is still much too vague to give us any
hint as to what to do. Another answer might be “We want to see how the
global graph of z —— q(x) = az? + bx + c looks?” This is already much
better because it specifies the function we want to know about—even if the
coefficients a, b, ¢ remain to be specified later. But we really should say what
we mean by “global graph”, in particular what we want the global graph to

271
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show as opposed to what we don’t expect the global graph to show.

On the other hand, we care about the global graph only inasmuch as it
makes information “graphic” and it is really the information itself that we
are after. So, what might this information be that we want? Exactly as
with power functions, we will want to know about 0-feature inputs, namely:
e (-height inputs,

e (-slope inputs,

e (-concavity inputs

and about feature-sign change inputs, namely

e height-sign change inputs,

e slope-sign change inputs,

e concavity-sign change inputs.

There still remains a question about what we want to know about these
inputs. Do we want to know about:

e The existence or non-existence of these inputs,

or

e The location of these inputs—assuming they exist.
Let us say we want to know everything (But now, as opposed to before, we
know exactly what “everything” covers.).

So, now that we know exactly what we want, what do we do to get it?
First, though, let us review the equipment we have available:

In the case of quadratic functions, we will still be able to solve some
global problems exactly but since everything begins to be computationally
more complicated, we will deal with only a few types of global problems.

1 The Essential Question

As usual, the first thing we do is to find out if the offscreen graph of a
quadratic function consists of just the local graph near co or if it also includes
the local graph near one or more co-height inputs.
In other words, given the quadratic function QUADRATICy ., that is the
function specified by the global input-output rule

QUADRATIC _, OUADRATIC(z) = a*z + ba + ¢

we ask the Essential Question:




1. The Essential Question 273

e Do all bounded inputs have bounded outputs

or

e Are there bounded inputs that have oo-height, that is are there inputs
whose nearby inputs have large outputs?

Now, given a bounded input x, we have that:

e since a is bounded, ax? is also bounded
e since b is bounded, bx is also bounded
e c is bounded

and so, altogether, we have that az?+ bz + ¢ is bounded and that the answer
to the Essential Question is:

THEOREM 13.1 Bounded Height Under a quadratic functions, all
bounded inputs have bounded outputs.

and therefore that

THEOREM 13.2 Offscreen Graph The offscreen graph of a
quadratic function consists of just the local graph near co.

EXISTENCE THEOREMS

The notable inputs are those

e whose existence is forced by the offscreen graph which, by the Bounded
Height Theorem for quadratic functions, consists of only the local graph
near oo.

e whose number is limited by the interplay among the three features

Since polynomial functions have no bounded oo-height input, the only
way a feature can change sign is near an input where the feature is 0. Thus,
with quadratic functions, the feature-change inputs will also be 0O-feature
inputs.

None of the theorems, though, will indicate where the notable inputs
are. The Location Theorems will be dealt with in the last part of the
chapter.
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2 Concavity-sign

Given the quadratic function QUADRATIC, ., that is the function spec-
ified by the global input-output rule
QUADRATIC

s QUADRATIC (z) = a’x + bx + ¢

recall that when z is near oo the Concavity-sign Near oo Theorem for
quadratic functions says that:

= (U’ U)

= (ﬂ, ﬁ)

1. Since the concavity does not changes sign as x goes through oo from
the left side of co to the right side of oo, the concavity does not have to
change sign as x goes across the screen from the left side of oo to the right
side of oo so there does not have to be a bounded Concavity-sign change
input:

e When a is + , Concavity-Sign|
e When a is — , Concavity-Sign|

I near oo

I near oo

EXAMPLE 13.1. Given a quadratic function whose offscreen graph is

Output Rulek —\ g e
+oo
U v

Off screen space

Input
e ol uler

Mercator view Magellan view
there is no need for a bounded concavity-sign change input, Zconcavity-sign change
and therefore we can have
utput Ruleh

+oo
V) V]
V) v
Scree
Off screen space.
.
Input
. ol Ruler
Mercator view Magellan view

2. In fact, not only does there not have to be a bounded concavity-sign
change input, there cannot be a bounded concavity-sign change input since
the local square coefficient is equal to the global square coefficient a and the
concavity must therefore be the same everywhere:
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THEOREM 13.3 Concavity-sign Change Non-Existence A
quadratic function has no bounded Concavity-sign change input.

3. Another consequence of the fact that the local concavity does not
depend on xg, and is thus the same everywhere, is that it is a feature of the
function QUADRATIC, . itself and so that the function QUADRATIC, .
has a global concavity specified by the global square coefficient a.

4. Moreover, the concavity cannot be equal to 0 somewhere because the
concavity is equal to a everywhere. So, we also have:

THEOREM 13.4 0-Concavity Input Non-Existence A quadratic
function has no bounded 0-concavity input.

3 Slope-sign

Given the quadratic function QUADRATIC, ., that is the function spec-
ified by the global input-output rule

QUADRATIC . O ADRATIC(z) = a*x + bz + ¢

recall that when z is near oo the Slope-sign Near oo Theorem for
quadratic functions says that:

e When a is + , Slope-Sign|, ,or oo = (5 \)

e When a is — , Slope-Sign|, ,or oo = (\v /)

1. Since the slope changes sign as x goes from the left side of oo to the
right side of oo across oo , the slope has also to change sign as x goes from
the left side of oo to the right side of co across the screen. In other words,
there has to be a bounded slope-sign change input.

EXAMPLE 13.2. Given a quadratic function whose offscreen graph is
\\ / a5 \ /
N\ g/
Screen Screen
Mercator view Magellan view

there has to be a bounded slope-sign change input to make up.

So we have

global concavity
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THEOREM 13.5 Slope-sign Change Existence A quadratic func-
tion must have at least one bounded Slope-sign change input.

2. On the other hand, a quadratic function can have at most one 0-slope
input because, if it had more, it would have to have 0-concavity inputs in-
between the 0-slope inputs which a quadratic function cannot have. So we
have

THEOREM 13.6 0-Slope Existence A quadratic function has
exactly one slope-sign change input and it is a O-slope input:

LSlope-sign change = L0-slope

4 Extremum

From the optimization viewpoint, a quadratic function has an extreme input,
that is an bounded input whose output is larger (or smaller) than the output
of nearby inputs

EXAMPLE 13.3. Given a quadratic function whose offscreen graph is

Output
R

Screen

[\

Mercator view Magellan view

Input Ruler

and since quadratic function cannot have an oco-height input, we cannot have

Output Ruley
+o0

—0 Xoo-height +06

Mercator view Magellan view
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and therefore there has to be at least one in-
put, Tmax, whose output is maximum.

But since we o oun

cannot have a we must have

Concavity-sign oy soeen soon
change input > Masimum

output

Input Jnput
uler

THEOREM 13.7 Extremum Existence A quadratic function has
a single extremum input

5 0-Concavity Location

6 0-Slope Location

Given a quadratic function, the global problem of locating an input where
the local slope is 0 is still fairly simple.

More precisely, given the quadratic function QUADRATIC,y ., that is
the function specified by the global input-output rule

QUADRATIC _, OUADRATIC(z) = aa® + bz + ¢

since the slope near xg is the local linear coefficient 2axg+ b, in order to find
the input(s) where the local slope is 0, we just need to solve the equation

2a0+b=0

which is an affine equation that we solve by reducing it to a basic equation:

2ax +b—-b =0-b

2ax = —b
Jaw _ b
2  2a
-b
r=—
2a

So, we have:
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THEOREM 13.8 0-slope Location For any quadratic function

QUADRATIC, ., )

L0o—slope = %

In fact, we also have:

THEOREM 13.9 Global Slope-sign Given a quadratic function
QUADRATICqp.,

e When a is positive,
Slope-sigh QUADRATIC|g v ohere <=2 = (\s\)
2a

Slope-sign QUADRATIC| s =\u)
2a
Slope-sign QUADRATIC|g v heres=t = (/+./)
2a

e When a is negative,
Slope-sign QUADRATIC]Everywhere<%> =(//)

Slope-sigh QUADRATIC| =(/,\)
2a
Slope-sign QUADRATIC o heres =t = (\o\)
2a

The case is easily made by testing the corresponding inequations near oco.

7 Extremum Location

From the Extremum Existence Theorem, we know that
Lextremum — L0-slope

and so we have that
—-b

Lextremum — 2,

We now want to compute the extremum output which is the output for
L0-slope*
QUADRATIC(xoslope) = al‘%_slope + bx_slope + €

:a(;j>2+b<;§)+c
:a<((;j))22> —i—b(;j) +c
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b2 -b quadratic equation
() () <
a

8 0-Height Location

Given a quadratic function, the global problem of locating a given local
height is the problem of locating the input(s), if any, whose output is equal
to the given height.

More precisely, given the quadratic function QUADRATIC,y ., that is
the function specified by the global input-output rule

QUADRATIC [ ADRATIC(z) = aa® + bz + ¢
and given the local height Hy, what we are looking for are the input(s), if
any, whose output is equal to Hy, that is:
QUADRATIC . OUADRATIC(x) = Hy
In other words, we must solve the equation
az? +bz+c = Hy

This is called a quadratic equation. Since we are looking for the 0-height
inputs, we let Hy be 0 and we will want to solve the equation

ar’+br+c =0
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1. Solving a quadratic equation is quite a bit more complicated than
solving an affine equation because we cannot reduce a quadratic equation to
a basic equation the way we reduce an affine equation to a basic equation.
The reason is that affine equations have two terms and the = sign has two
sides so that we could separate the terms by having an z-term on the left
side of the = sign and a constant term on the right side of the = sign which
gave us a basic equation.

However, we cannot separate the terms in a quadratic equation because the

output QUADRATIC(x) has three terms while the = sign has only two

sides.

This, though, may have something to do with the fact that inputs are

counted from the 0 on the ruler which can be anywhere in relation to the

global graph of the function, rather than from an input which is meaningful

for the global graph of that function.

What we will do then is to try to use, instead of the inputs themselves, the

location of the inputs relative to an input that is meaningful for the function

at hand and the obvious thing is to try is zogope and so we will try to use:
U = T — T0o-slope

so that

T = ZTo-slope T U
and therefore, instead of using the global input-output rule
w LUAPRATIC | 017 ADRATIC(z) = az® + ba + ¢
we will use the global input-ouput rule

QUADRATIC 9
|y g opetu QUADRATIC(z) |y gy o otu = 03~ +br +c S
that is
QUADRATIC 5, )
u QUADRATIC(xoslope + ©)

= [a] U2 -+ [2ax0—slope + b] u + [ax%_slope + be—slope + C]
By the way, note that we will continue to count the outputs from the 0 on
the output ruler. (Some people don’t and prefer to count the outputs from
QUADRATIC(xo-s1ope)-)
2. But since zq_giope =

QUADRATIC 4,
U = QUADRATIC (z0.slope + 1)

= [a] u? + [0] u+ [aa:g_slope + bxo-slope + C]

—b

5, this reduces to

that is to only two terms

= [a] u? + [a'r(%—slope + be-slope + C]
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and the equation we want to solve, then, is

[a] u? + [awg_slope + b2 slope + c] = Hy
that is

[a] u? = Hy — [ax%_slope + b0 slope + c]
that is
Hy — [ax%_slope + bZo-slope + c]

a
in which everything on the right-hand side is known so that we have separated
the known from the unknown.

3. Since we are trying to locate the 0-height inputs, we let Hy = 0.
In that case, the equation reduces to

2:

u

2
_ [a:po_slope + b2 o s1ope + C]

a
. _QUADRATIC(xextremum)
B a

and, using the Extremum Location Theorem,

—Discriminantgu aApraTic
4a

_ DiscriminaIiQUADRAT]C
4a?
Altogether then, instead of the original equation
ar’ +br+c=0
we have the rather nice (nicer?) equation

o DiscriminantqQuAprATIC

u =
4q2
4. Now, of course, whether or not we can solve depends on whether or

not the right hand side is positive and since the denominator is a square,
and therefore always positive, whether or not we can solve depends only on
the sign of Discouapraric (hence the name “discriminant”):

» If Discouapraric is negative, the equation has no solution,
» If Discouapraric is 0, the equation has one solution, namely 0,
» If Discquapraric is positive, the equation has two solutions, namely

v/ DiscQuapraric

*U=-— 2a
v DiscQuapraric
o U=+ Q

2a
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This, of course, is hardly surprising inasmuch as the discriminant is inti-
mately tied with the extremum output and thus this theorem fits very well
with the 0-height Existence Theorem.

5. It remains only to de-locate, that is to return to the input z. For
that, we need only use the fact that

U = T — T0o-slope

to get
_ y/Discquapraric
® T — X0-slope = — %a
v/DiscQuapraric
® T — Z(-slope = T oa
that is
_ vV DiscQuaprAaTic
® I = To-slope — %a
v/ DiscQuapraric
® T = Z0-slope T 2a

and thus the celebrated “quadratic formula”:

vb%2—4ac

® T = Z0-slope — %2a

which, by the way, shows that, when they exist, the two 0-height inputs are
symmetrical with respect to Zogope

6. Altogether, then, we have

THEOREM 13.10 0-height Location For any quadratic function

QUADRATICqp 4,

» If Discouapraric is negative, QUADRATIC has no 0-height in-
put,

» If Discouapraric is 0, QUADRATIC has one 0-height input,
namely 5—;’,

» If Discouapraric is positive, QUADRATIC has two solutions,
namely

o —b _ Vb2-dac
2a 2a
o =0 + Vb%—4ac

2a 2a

7. Finally, here are a couple of examples.
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EXAMPLE 13.4. To find the 0-height inputs of the quadratic function

specified by the global input-output rule

LN Rick(z) = +4x% — 242 + 7

we can proceed as follows:
i. Either we remember that zo_sope = 52 S0 that we get To_siope = 2(%%) =
+3, or, if worse comes to worst, we look for the 0-slope input by localizing at
an undisclosed input ¢ and then setting the coefficient of u equal to 0 to get
Lo—slope-
ii. Then, we get the u-equation by setting x = z_gope + u, that is, here, by
setting v = +3 + w:

Rick

. . 2
+3 4+ u ——— Rick(T)| hen z—t3pq = +4T° — 24T + 7‘When i3t

= 4 [+3+uf> —24[+3+u] + 7
= +4[+9+ 6u+u?| — 24 [+3 4 u] +7
= +36 + 24u + 4u® — 72 — 24u + 7

= —29 + 40/
iil. We now solve the u-equation
—29 +4u? =0
+4u? = +29
5  +29
ey
u? = +7.25

and so we have:
> Up—output = +V +7.25 = +2.69 + []
and

> uO*Output - — +725 = *269 + []
and therefore

> Z0—output = +3 + 2.693 + [..] = +5.693 + [...
and
» To—output = +3 —2.693 + [] = +0.307 + []

Alternatively, if we remember the 0-height Theorem, then we can proceed
by first computing the discriminant and



284 Chapter 13. Quadratic Functions: Global Analysis

EXAMPLE 13.5. We look at the same equation but assume that we
remember the 0-height Theorem
LN Rick(x) = +42* — 242 4+ 7
that is:
Discriminant Rick = (—24)? — 4(+4)(+7)
= +576 — 112
= +464
And since the discriminant is positive, we have
VDiscriminant

L0—output = L0—slope + 24

+24 /4464
2(+4) 2(+4)
+24  21.541 + [...]

B +8
45541 +[...]
- +8
= +5.693 + [...]
and similarly
v/ Discriminant

L0—output = L0—slope —

+24 v +464

2(+4)  2(+4)
+24  21.541 + ..

2a

+8 +8
2460 + [...]
48
= 4+0.307 + [...]
Either way, the reader should check that, indeed,
Rick

+5.693 ——— 0+ [...]
and

+0.307 2K 04

8. As a consequence of the 0-height Location Theorem, we have:
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THEOREM 13.11 Global Height-sign For any quadratic function
QUADRATIC,p, Height-sign QUADRATIC = (Sign a, Sign a)
everywhere except, when Discouapraric is positive, between
the two xg_peignt inputs where Height-sign QUADRATIC =
(—Sign a,—Sign a)

As a result, when looking for the inputs for which the output has a given
sign, we have two approaches:

i. We can solve the associate equation, one way or the other, and then test
each one of the sections determined by the 0-height input(s), if any.

EXAMPLE 13.6. To solve the inequation —3x% + tz — 11 < 0, we can
begin by looking for its boundary inputs by solving the associated equation
—32% + to — 11 = 0 and then test the resulting intervals.

ii. We can use the Global Height-sign Theorem.

(1) The difficulty is that there are two cases to deal with:

when a>0, concavity is u, the graph bottoms out and so there is a
smallest bounded output when a<0, concavity is n, the graph culminates
and so there is a largest bounded output

and that we want to cover them both in one single statement.

So, we use the term "extreme bounded output" to cover both cases and
we can now say that the extreme bounded output is the output for zg—slope.
(regardless of the sign of a.)

(2) Yesterday, using qualitative global graphs, we agreed that: if the sign
of the extreme bounded output is the same as the height-sign near infinity,
there can be no 0-height input. if the sign of the extreme bounded output
is the opposite of the height-sign near infinity, there will be two 0-height
inputs.

But the height-sign near infinity is the sign of the coefficient a so this
becomes: if the sign of the extreme bounded output is the same as the sign
of the coefficient a, there can be no 0-height input. if the sign of the extreme
bounded output is the opposite of the sign of the coefficient a, there will be
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two 0-height inputs.

We also found that the extreme output is the output for zg — slope =
-b/2a and we computed that the extreme output is equal to [—b? + 4ac]/4a

As I recall, this is where we left off.

(3) Since the number b? — 4ac is what is called the discriminant of the
function, we have that the extreme output = -Discriminant/4a

And now we are ready for the kill. The weapon will be that: Two
numbers have the same sign if they multiply to + Two numbers have opposite
signs if they multiply to -

(4) So our agreement above can now be restated as: if the extreme
bounded output and the coefficient a multiply to +, there can be no 0-
height input. if the extreme bounded output and the coefficient a multiply
to -, there will be two 0-height inputs.

that is: if Sign of -Discriminant/4a * a = 4+, there can be no 0-height
input. if Sign of -Discriminant/4a * a = -, there will be two 0-height inputs.

that is, after canceling the coefficient a if Sign of -Discriminant = +,
there can be no 0-height input. if Sign of -Discriminant = -, there will be
two 0-height inputs.

that is, since Sign of -Discriminant is the opposite of Sign of Discriminant
if Sign of Discriminant = -, there can be no 0-height input. if Sign of
Discriminant = 4+, there will be two 0-height inputs.

Which is the qualitative part of the 0-height Theorem FOR QUADRATIC
FUNCTIONS.

(The quantitative part of the 0-height Theorem FOR QUADRATIC
FUNCTIONS is that the 0-height inputs—when they exist—are at a dis-
tance of ADisc/2afromzg — slope. )
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Chapter 14

Cubic Functions: Local
Analysis

Output at xg, 289 e Output near oo, 290 ¢ Output near zo, 292 e Local
graphs, 296 e Local Feature-signs, 300 e Local Graph Near oo, 304 .

Quadratic functions are specified by global input-output rules like the
generic global input-output rule:

g —CUBIC CUBIC(z) = az @ ba™? @ ca™ @ da”

output-specifying code

which we usually write

=ar® + b’ +cx+d
output-specifying code

where a, called the cubic coefficient, b, called the quadratic coefficient,
¢, called the linear coefficient, and d, called the constant coefficient,
are the bounded numbers that specify the function CUBIC.

EXAMPLE 14.1. The cubic function TIN A specified by the cubic coef-
ficient +72.55, the quadratic coefficient —23.04, the linear coefficient —17.39
and the constant coefficient +5.84 is the function specified by the global input-

output rule

RINA _, TINA(z) = —72.552° —23.04 22 —17.39 2 +5.84

cubic coeff.  quadratic coeff. linear coeff. constant coeff.

It is worth noting again that

287
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NOTE 14.1 The terms in the global input output rule need not be
written in order of descending exponent. This is just a habit we have.

EXAMPLE 14.2. The function specified by the global input-output rule
x—2PL L DIDI(x) = —12.062° + 21.032% — 31.392 + 5.34
could equally well be specified by the global input-output rule
v —2PL L DIDI(x) = +5.34 + 21.032% — 31.392 — 12.062°
or by the global input-output rule

x—2PL L DIDI(x) = —31.39x + 5.34 — 12.062° + 21.03°

We now introduce some standard terminology to help us describe very
precisely what we will be doing. The output-specifying code of the affine

function specified by

APFINE CUBIC(x) = ax® +bx® + cx +d

output-specifying code

consists of four terms:

e ax® which is called the cubic term.

e bz? which is called the quadratic term.
e cx which is called the linear term.

e d which is called the constant term,

and there is of course also

e bz’ + cx + d which is called the quadratic part

EXAMPLE 14.3. The output-specifying code of the function specified by
the global input-output rule
TINA 3 2
TINA(z) = —7141 x —23.04z* —-31.39 x +5.84
—— —— —— ——

cubic coeff. quadratic coeff. linear coeff. constant coeff.

consists of four terms:
= —71.412% —23.042> —31.392 +5.34
——— N —

cubic term quadratic term linear term constant term

LANGUAGE 14.1 Whether we look upon d as the constant coefficient,
that is as the coefficient of 2 in the constant term dz° or as the constant
term dx¥ itself with the power 2 “going without saying” will be clear
from the context.
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1 Output at xg

Remember from section 1 that xq is a generic given input, that is that xg is
a bounded input that has been given but whose identity remains undisclosed
for the time being.

PROCEDURE 14.1 To evaluate at xy the function specified

by z _CUBIC , CUBIC(z) = az® + bz® +cx +d

i. Declare that x is to be replaced by zg

x %CUBIC(I‘)’ =az+ bz’ 4+ cx+d

T<—To <o T<—T0o
which gives:

T _CUBIC CUBIC(z0) = axg® + bxo? + cxg + d

output-specifying code
ii. Fxecute the output-specifying code into an output number:
= axd + bxd + cxo + d
which gives the input-output pair
(:L‘o, axd + bx + cxo + d)

DEMO 14.1 To evaluate at —3 the function specified by

z 2B ARIA(z) = +17.5223 + 21.032% — 32.67z + 71.07

i. We declare that = is to be replaced by —3

x ARIA L ARIA(z) = +17.522% + 21.0322 — 32.672 + 71.07
r——3 r——3 r——3
which gives
ARIA 3 2
—3 ARIA(-3) = +17.52(—3) + 21.03(—3)2 — 32.67(=3) + 71.07

output specifying code
ii. We execute the output-specifying code into an output number:
= —473.04  +189.26 & +98.01 ¢ +71.07

=—114.7
which gives the input-output pair

(—3,-114.7)
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However, as already discussed in 77 77 and as has already been the case
with monomial functions, affine functions and quadratic functions, instead of
getting the output number returned by a quadratic function at a given input,
we will usually want all the outputs returned by the quadratic function for
inputs near that given input. So, instead of getting the single input-output
pair at the given input, we will get the local input-output rule with which
to get all the input-output pairs near the given input.

2  Output near oo

As already discussed in 77 7?7 and in section 2 Output near oo, in order to
input a neighborhood of oo, we will declare that “x is near oo” but write
only = after that. This, again, is extremely dangerous as it is easy to forget
that what we write may be TRUE only because x has been declared to be
near oo.

1. We will ezecute the output-specifying code, namely a3+ bx? 4 cx+d,
into an output jet, that is with the terms in descending order of sizes, which,
since here z is large, means that here the powers of z must be in descending
order of exponents. We will then have the local input-output rule near oo:

near oo —YBIC CUBIC(x) = Powers of  in descending order of exponents

output jet near oo

EXAMPLE 14.4. Given the function specified by the global input-output

rule

o B4 PIBA(z) = —61.03 + 37.8123 — 82.47x + 45.032>

To get the output jet near oo, we first need to get the order of sizes.

i. —61.03 is bounded

ii. —82.47 is bounded and x is large. So, since bounded - large = large,
—82.47 - x is large

iil. +45.03 is bounded and x is large. So, since bounded - large = large,
+45.03 - z is large too. But large - large is larger in size than large so
+45.03 - 22 is even larger than —82.47 -

iv. +37.81 is bounded and x is large. So, since bounded - large = large,
+37.81 - z is large too. But large - large - large is larger in size than
large - large so +37.81 - z3 is even larger than +45.03 - 22

So, in the output jet near 0o, +37.8123 must come first, +-45.0322 must come
second, —82.47x comes third and —61.03 comes fourth



2. Output near oo 291

Then, we get the local input-output rule near oc:

z near oo —2 22 TIBA(z) = +37.8123 + 45.0322 — 82.47z — 61.03

output jet near oo

2. Altogether, then:

PROCEDURE 14.2 To evaluate near oo the function specified

by = OUBIC , CUBIC(z) = az® + bz + cx +d

i. Declare that x is near oo
x _CUBIC , cUBIC(x)

T near oo

=ar® +bx® +cx+d

I near oo I near oo

which gives:

z near oo ——2PIC CUBIC(z) = az® 4+ bz + cx + d

output-specifying code
ii. Fxecute the output-specifying code into a jet near oo

= 0] «* @ [a] 2* © [H] = & [E]

output jet near co

which gives the local input-output rule near oo:

xnearoo%CUBIC(:c): [I] 3 @ [a] 2 @ [b] z D [c]

output jet near oco
(Here the jet near oo looks the same as the given global input-output
rule but that is only because the output-specifying code happened to
be written in descending order of exponents.)

DEMO 14.2 To evaluate near oo the function specified by the global input-
output rule

DINA . DINA(z) = —61.03 + 37.812% + 51.3222 — 82.47x

i. We declare that = is near oo

. _DINA . DINA(x) = —61.03 + 37.812" + 51.322% — 82.47x
which gives:

2 near oo —N4 , DINA(z) = —61.03+37.81 2> +51.32 2 2 — 8247z

output-specifying code
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ii. We execute the output-specifying code into a jet near oc:

— [ ¢ o [#5082) > o [EE2EE] o o [EEm0s]

which gives the local input-output rule near co:
# near 5o —*“— DINA(z) - [ Si] «°* o [#5182] +* o [0 o o [=6003]

output jet near co

(Here the jet near co does not look the same as the global input-output rule
because the output-specifying code happened not to be in descending order of
exponents.)

3. The reason we use jets here is that the term largest in size is the
first term so that to approrimate the output we need only write the first
term in the jet and just replace the remaining terms by [...] which stands
for “something too small to matter here”. In other words,

THEOREM 14.1 Approximate output near oo. For cubic func-
tions, the term in the jet that contributes most to the output near co
is the highest degree term in the output jet near oo:

x near co — 221, CUBIC(z) = [.]m3 +[...]

EXAMPLE 14.5. Given the function specified by the global input-output
rule
DINA 3 2
x —— DINA(xz) = —61.03 + 37.812° 4 51.322° — 82.47x

near oo we will often just use the approximation
z near co M KINA(z) = [-] 3 o]

3 Output near xg

We now deal with the output of the neighborhood of some given bounded
input zg.

1. In order to input a neighborhood of a given input xy we will declare
that x < zg @ h that is that x is to be replaced by zg @ h. As a result, we
will have to compute (zg @ h)? for which we will have to use an addition
formula from
textscalgebra, namely 77 in 7?7 on page ?77.
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2. We can then ezecute the input-output specifying phrase into a jet Jjet near o
that is with the terms in descending order of sizes which here, since h is
small, means that the powers of h will have to be in ascending order of
exponents. We will then have the local input-output rule near the given
input:

CUBIC

2o ® h ————— CUBIC(z9 ® h) = Powers of h in ascending order of exponents

output jet near oo

We will therefore use:

PROCEDURE 14.3 To evaluate near z; the function specified

by » —ZBIC CUBIC(z) = az® + bx® + cx +d

i. Declare that x is to be replaced by zg + h

_CUBIC , cUBIC(x)

zx0+h

=ax® +bx’ +cex+d
zx0+h

z<—xz0+h
which gives:
CUBIC 3 2
g+ h ——= CUBIC(z0+ h) = a(zo + h)® + b(xo + h)* + c(xo + h) +d

output-specifying code
ii. Ezecute the output-specifying code into a jet near xq:
=a (:138 + 322h + 3zoh? +h3) +b (x% +2$0h—|—h2> +c(zo+h)+d

= [azd| o BEEQ) o BEE:* © @
b & 2Bl & [Bln*

$)
@ [ezg © @h
<)

d
= [ T | - R | - s - (]

output jet near zg

which gives the local input-output rule near xg:

2o+ h 2L CUBIC(zg + 1)

— [aad + b2 + cwo+4d ] @ [_]h@ [_]hQ@ IS

output jet near xo
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DEMO 14.3 To evaluate near —3 the function specified by

x 28B4 ARBA(z) = —32.672 — 31.182° + T1.07 + 81.262

i. We declare that z is to be replaced by —3 + h

" _ARBA | ARBA(x) = —32.67z — 31.182° + 71.07 + 81.262>

x——3+h x<——3+h x<——3+h

which gives

—34+h—2EBA L ARBA(=3+ h) = —32.67(=3 + h) — 31.18(—=3 + h)® + 71.07 + 81.26(—3 + h)2

output specifying code
ii. We execute the output-specifying code into a jet near —3:
= —32.67(—3+h) — 31.18 ((—3)" 4+ 3(—3)*h + 3(—=3)h*> + h®) 4+ T1.0T + 81.26 ((—3)> + 2(—3)h + h?)
= —32.67(—3) — 32.67h
—31.18(—3)% — 31.18 - 3(—3)%h — 31.18 - 3(—3)h* — 31.18R3
+ 71.07
+ 81.26(—3)2 + 81.26 - 2(—3)h + 81.261>

= 498.01  —3267h
» [ESS6) < [SANSG - RS0 - [

@ +71.07

@ +731.34 ©|—487.56 h < |+81.26/1°
= [ +98.01 + 841.86 + 71.07 + 731.34 ]
[ -a2.67 - sa1.86 - as7.56 ]
- [+2s062-+ 8126 ]2
» | ]
- (e8] [ a0 - [ wsonss] - - | =1

output jet near —3

which gives the local input-output rule near —3:

34 h —ARNA L URBA(-3 +h) = [EiT2e8 | - [iEeRea ] - [senssl] - - [ ]

output jet near —3

3. When all we want is a feature-sign, though, the above procedure is
very inefficient and we will then use the following procedure based directly
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on the fact that a cubic function is the addition of:
o o |[CUBENREHEOR. (Scc 77 on 77?)
o a [square function , (See ?? on ??)
®a _, (See 7?7 on ?77.)

e a constant function . (See 7?7 on ?77.)

that is:

CUBIC CUBIC(z) = a2® @ b2’ © cx @© _d
T =N =~ ~~

We declare that = is near xg that is that x must be replaced by zg + h:
_CUBIC , CUBIC(z) = a(zo+ h)> @bz + h)? @ c(z0+ h) & @
= square B== constant
The output of the local input-output rule near xy will have to be a jet:

o+ h SUPIC cUBIC@o+h) = |eo[ Jhe[ ]n2e[ ]w3
and we want to be able to get any one of the coefficients of the output jet
without having to compute any of the other coefficients. So, what we will do
is to get the contribution of each monomial function to the term we want.
This requires us to have the addition formulas at our finger tips:

a.

More precisely,

b.

i. If we want the coefficient of h® in the output jet:

e The [CHBEHMREHON contributes -

e The _ contributes -
e The _ contributes [€&g]

e The |constant function contributes d
so we have:

ro+h PP, CUBIC(xo + 1) = ([l + BB + i@ + @) o [ |ne| |we] |0

ii. If we want the coefficient of h' in the output jet:

e The _ contributes -
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e The [RCRRRBGHOR contributes @

e The constant function contributes nothing
so we have:

zo+h UG cUBIC(y + 1) = [ ] o BBl + B0+ @]ne [ |ne| |0

iii. If we want the coefficient of h? in the output jet:

RENNY T pe——

e The _ contributes @
e The _ contributes nothing

e The |constant function contributes nothing

so we have:

zo+h G cUuBIC@o + ) = || e [EE@+@]’e] |#°

iv. If we want the coefficient of h? in the output jet:
e The contributes [@j
e The contributes nothing

e The _ contributes nothing

e The constant function contributes nothing

so we have:
o+ h SUPIC cUBIC(@o+h) = |e[ Jre[ ]n2e[mr

4 Local graphs

Just as we get a plot point at a bounded input from the output at that input,
we get the local graph near any input, be it bounded or infinity, from the jet
near that input.

PROCEDURE 14.4 To graph near co the function specified

by z CUBIC, CUBIC(z) = az® + bz* + cx + d

1. Get the output jet near oo:
2 near oo — 1<, CUBIC(z) = [a] 3 @ [.] 2 @ [.] z ® [.]

output jet near co
(See ?? on ?77.)
2. Get the local graphs:

a. Of the cubic term by graphing near co the monomial function

T — [at]x?’ using 7?7 7?7 on 77.

b. Of the quadratic term by graphing near co the monomial func-
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tion = — [a ]x2 using 77 77 on 77.

c. Of the linear term by graphing near co the monomial function
T — be using ?? 77 on ?7.

d. Of the constant term by graphing near co the monomial func-
tion » — ] using ?? 72 on ?7.
3. Get the local graph near oo of CUBIC using chapter 9 by adding-
on to the local graph of the cubic term the local graph of the quadratic
term, the local graph of the the local graph of, and the local graph of
the constant term.

DEMO 14.4 To graph near co the function specified by the global input-
output rule
DINA 3 2
x ———— DINA(z) = —61.03 + 37.812° + 51.322° — 82.47x

1. We get the output jet near co: (See Demo 14.2 on page 291)

z near so —4— DINA(x) = [HSHEH] «° o [#5182] o* o [82E] = o [6003]

output jet near co

2. Get the local graph near oo of each term:

a. We get the graph of the cubic b. We get the graph of the
term by graphing the monomial quadratic term by graphing the
function x — 22 near oo monomial function
(See Demo 6.24 on page 175) r—= [ +51.32 ]952 near oo (See

Aoutouts Demo 6.24 on page 175)

e Offscreen ol AOutputs

\Quadratc term m/
Screen
/t Screen
—o0 Cubic term neeo

InDuti Offscreen

—© 0 Inputi
+00

—0
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c. We get the graph of the linear
term by graphing the monomial
function x — Z near oo
(See Demo 6.24 on page 175)

AOutputs
+00

d. We get the graph of the
constant term by graphing the
monomial function x —
near oo (See Demo 6.24 on page 175)

AOutputs
+00

Constant term near oo

{ear term near oo

OF = =r=rmmrmmimm e m - OF === memimmmm .
—61.03 |- m— —
Screen \ Screen
S Offscreen —0 Offscreen
Inpu ti Inpu t*
—0 +00 —00 +00

3. We get the local graph near co of DIN A by adding-on to the graph of the
quadratic term the graph of the linear term and the graph of the constant term.
(See Demo 6.24 on page 175)

AOutputs
400

—61.03 |

Screen
al graph neas
Offscreen

Input:
+<x>i

—0

—00

PROCEDURE 14.5 To graph near z; the function specified

by z —<YEIC, CUBIC(%) = aa® + ba? + cx + d

1. Get the local input-output rule near xo of CUBIC using 7?7 77 on
27

zo + h 22 CUBIC (20 + h)

= [ | - PR | - (s « (]

output jet near zg

2. Get the local graphs:
a. Of the constant term by graphing near 0 the monomial func-
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tion z — [ax%—l—b:c%—i—csco—l-d]
b. Of the linear term by graphing near 0 the monomial function

x — [ 55
c. Of the quadratic term by graphing near 0 the monomial func-

tion z — [ x2

d. Of the cubic term by graphing near 0 the monomial function
T — [.] z3
3. Get the local graph of CUBIC near zy by adding to the local
graph of the constant term, the local graph of the linear term, the
local graph of the quadratic term, the local graph of the cubic term.

DEmMO 14.5 To graph near —3 the function specified by

x —2BB4  ARBA(z) = —32.67x — 31.182° + 71.07 + 81.262
1. We get the local input-output rule near —3 of ARBA (See Demo 14.3 on

page 294):

“34h —APNA L URBA(=3 + 1) = [Ei28) | - [iseRea ] - [esenss] - - [ ]

output jet near —3

2. We get the local graphs

a. We get the graph of the b. We get the graph of the linear
constant term near —3 by graphing term near —3 by graphing the
the monomial function monomial function
z = [ +1742.28 ] T — [ ]a: (See Demo 6.24
. (See Demo 6.24 on page 175) on page 175)
AOutputs AOutputs
+oo|  Constant term ! +00 !
near-3 : :
—15 ]
+169.08§] : !
: :
ob-memmen. T S ] IS ... §
i i
E Screen ' Screen
1 1
; Linear terl ;
1 Offscreen near—3 1 Offscreen
—o0 i —00 i
; ; Input
0 +oo$

Input:
—o0 -3 0 -J—czoi
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c. We get the graph of the d. We get the graph of the cubic
quadratic term near —3 by graphing term near —3 by graphing the
the monomial function monomial function
T — [ +361.88 ]x2 : (See T — [-]x3 : (See Demo 6.24
Demo 6.24 on page 175) on page 175)

AOutputs AOutputs
+00 +00

"\ Screen : "\ Screen
Quadratic Cubic terrh
term neat3 — Offscreen near —3 Offscreen
: Input: : : Input:
0 3 0 Jrooi —o0 -3 0 +ooi

3. We get the local graph near —3 of ARB A by adding to the local graph of the
constant term the local graph of the linear term, the local graph of the quadratic
term, and the local graph of the cubic term. (See Demo 6.24 on page 175)

AOutputs
+00 ! Local grapt
f— near—3
i
0.428 !
1
i
0 .......... - i _____________
i
! Screen
!
1
1 Offscreen
—00 i
H Input.
-&-OIOi

5 Local Feature-signs

As we saw in 77 77 a feature-sign near a given input, be it near co or near
xg, can be read from the local graph and so we could proceed as follows:

i. Get the local input-output rule near the given input (See ??7 on 7?7
when the given input is co or 7?7 on 7?7 when the given input is zg.)

ii. Get the local graph from the local input-output rule (See 7?7 on 77.)

iii. Get the feature-sign from the local graph. (See 77 77.)

However, things are in fact much simpler: Given an input, be it co or a
bounded input xg, to get a required feature-sign near that given input, we
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look for the term in the output jet near that input that
i. Has the required feature.

and

ii. Is the largest-in-size of all those terms with the required feature.
So, as we will now see, we usually need to get only one term in the output
jet rather than the whole output jet.

1. Near infinity things are quite straightforward because, for a cubic
function, the first term in the output jet near oo is both the largest-in-size
and a regular monomial so that it has all three features:

PROCEDURE 14.6 To get the feature-signs near co of the

function specified by z _CUBIC , CUBIC(x) = az3+bx?+cx+d

i. Get the approxzimate local input-output rule near oo:
z near co — 221, CUBIC(x) = [a]x3 & [b]a:2 @ [c]x ® [d]

output jet near oo
3
= [a]x & [...]
approximate output jet near co
ii. Then, in the approximate output jet near oo:

o Get the Height-sign, the Slope-sign and the Concavity-sign all
from the cubic term [a]xg because the next terms, [b]xz, [c]:n

and [d] are too small to matter. (Not to mention the fact that
a linear term has no concavity and a constant term has neither
concavity nor slope.)

DemoO 14.6
To get the Height-sign near oo of the function specified by

DELIA , DELIA(z) = +122° — 22% + 63z — 155

i. We get the local input-output rule near co :

z near oo —2 24, DELIA(x) = +122° — 22% + 63z — 155

—[+12)te[-2]? e [+63]ee - 155]

output jet near co

ii. We get Height-sign from the cubic term [+ 12]1‘3. (The quadratic term
[f 2]1’2, the linear term [+63]z and the constant term [f 155] are too small
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to matter)

iii. Since the cubic coefficient [+ 12] is positive, we get that Height-sign
DELIA near oo = (+,—). (Seen from c0.)

DeEmo 14.7
Get the slope-sign near co of the function specified by the global input-output
rule

PETER , DETER(z) = —0.452% + 3.032% — 81.67x + 46.92

i. We get the local input-output rule near oo :

z near oo —2EEE L DETER(z) = —0452° + 3.032% — 81.672 + 46.92

=[-045]s* @ [+3.03)a2 & [ - 81.67)2 & [ + 46.92]

output jet near oo

ii. We get Slope-sign from the cubic term [f O.45]z3. (The quadratic term

[+ 3.03]x2, the linear term [f 81.67]:1: and the constant term [+ 46.92] are
too small to matter.)

Since the cubic coefficient —0.45 is negative, we get that Slope-sign DETER
near co = (\,\). (Seen from o0.)

2. Near a bounded input though, things are a bit more complicated:
i. The first term in the output jet is usually the largest-in-size so that it
gives the Height-sign. However, the first term usually has neither Slope nor
Concavity because the first term is usually a constant term.
ii. The second term in the output jet is usually too smalll-in-size to change
the Height-sign as given by the first term but it is usually the largest-in-
size term that can give the Slope-sign. However, the second term has no
Concavity because the second term is usually a linear term.
iii. The third term in the output jet is usually too smalll-in-size to change
the Height-sign given by the first term and the Slope-sign given by the second
term but it is usually the only term that can give the Concavity-sign.
So we can usually read each feature-sign directly from the appropriate term
in the output jet - keeping in mind that the exceptional monomial functions
do not have all the features.
However, near a bounded input, the given bounded input may turn out to
be critical for the local feature:
i. If the constant term in the output jet is 0, then the term which gives the
Height-sign can be either the linear term or the quadratic term if the linear
term is 0 or even the cubic term if the quadratic term turns out to be 0 too.
The bounded input is then again said to be critical for the Height.
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ii. If the linear term in the output jet is 0, then the term which gives the critical for the Concavity
Slope-sign is the quadratic term or the cubic term is the quadratic term turns

out to be 0 too. The bounded input is then said to be critical for the Slope.

iii. If the quadratic term in the output jet is 0, then the term which gives

the Concavity-sign is the cubic term. The bounded input is then said to be

critical for the Concavity.

So, we usually need to compute only one coefficient in the output jet. But

if the given bounded input turns out to be critical for that feature, then we

need to compute the next coefficient: So we use

PROCEDURE 14.7 To get the feature-signs near zy of the

function specified by = _CuBIC , CUBIC(z) = ax®+bz*+cz+d

i. Get the local input-output rule near xg:

zo + h Z2BLY CUBIC (o + h) = a(zo + h)® + b(xo + h)? + c(zo + h) + d

—q (xg + 322k + 3zoh? +h3) +b(g:§ + 2z0h + h2) +c(zo+h)+d
= [axg + bz} + cxo + d] ® [3a:v(2) + 2bxg + c]h ® [3ax0 + b] h? @ [a] h?

output jet near xzo
ii. Then, in the output jet near xg:

o Get the Height-sign from the constant term [a:vg + bad + cxo + d].
(The linear term, the quadratic term and the cubic term are too
small to matter.)

If the constant coefficient is 0, get the Height-sign from the linear
term [3a$% + 2bzo + c]h. (The quadratic term and the cubic term
are too small to matter.)

If the linear coefficient is 0 too, get the Height-sign from the
quadratic term [Baxo + b] h?. (The quadratic term and the cu-
bic term are too small to matter.)

If the quadratic coefficient is 0 too, get the Height-sign from the
cubic term [a] h3. (The quadratic term and the cubic term are too
small to matter.)

e Since the constant term has no slope, get the Slope-sign from the
linear term [3a$g +2bxg —l—c]h. (The quadratic term and the cubic
term are too small to matter.)

If the linear coefficient is 0, get the Slope-sign from the quadratic
term [3@.%'0 + b] h2. (The cubic term is too small to matter.)

If the quadratic coefficient is 0 too, get the Slope-sign from the
cubic term [a] h3.
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e Since both the constant term and the linear term have no con-
cavity, get Concavity-sign from the quadratic term [Baxo + b] h?.
(The cubic term is too small to matter.)

If the quadratic coefficient is 0, get the Slope-sign from the cubic
term [a] h3.

DeEmo 14.8
To get the feature signs near —3 of the function specified by the global input-
output rule

—ARBA . ARBA(z) = —32.67z + 71.07 + 81.2622

i. We get the local input-output rule near —3 (See Demo 14.3 on page 294):

—3+h —28BA L ARBA(-2+ h) = —32.67(=3 + h) + 71.07 + 81.26(—3 + h)>

output specifying code

= [ +900.428 ] @ [ —519.63 ]h @ [ +81.26 ]h2

output jet near —3

ii. Then, from the output jet:
e Since the constant coefficient [ +900.428 ] is positive, we get that Height-
sign ARBA near —3 = (+,+).
e Since the linear coefficient [ —519.63 ]h is negative. we get that Slope-sign
ARBA near =3 = (\,\)

e Since the quadratic coefficient +81.26]h2 is positive, we get that
Concavity-sign ARBA near —3 = (U, U)

THEOREM 14.2 Approximation Near oo

6 Local Graph Near Infinity

THEOREM 14.3 Height-sign Near oo

THEOREM 14.4 Slope-sign Near oo
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THEOREM 14.5 Concavity-sign Near oo

THEOREM 14.6 Local Input-Output Rule

THEOREM 14.7 Height-sign Near x

THEOREM 14.8 Slope-sign Near zg

THEOREM 14.9 Concavity-sign Near zy Given the function
CUBICa,b,c,d
e When Local square coefficient of CUBIC(x¢) = +,

Concavity-sign CUBIC | .., 5, = (U,V)

e When Local square coefficient of CUBIC(zg) = —,
Concavity-sign CUBIC' | ... ., = (N,N)

e When Local square coefficient of CUBIC(xg) = 0,
Concavity-sign CUBICQ| ., 2, depends on

the sign of the local cube coefficient of CUBIC(xg)
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Chapter 15

Cubic Functions: Global
Analysis

Global Graph, 307 e Concavity-sign, 308 e Slope-sign, 310 e Extremum,
311 e Height-sign, 312 e 0-Concavity Location, 314 e 0-Slope Location,
315 e Extremum Location, 317 e 0-Height Location, 319 .

In the case of cubic functions, we will be able to solve exactly only a very
few global problems because everything begins to be truly computationally
complicated.

1 Global Graph

As always, we use

PROCEDURE 15.1 Essential graph of a function specified by
_CUBIC , CUBIC(z) = az3 +bz® +cz +d

i. Graph the function near oo, (See ?? on 77.)
ii. Ask the ESSENTIAL QUESTION:

e Do all bounded inputs have bounded outputs
or

e Are there bounded inputs whose nearby inputs have un-
bounded outputs? (co-height inputs.)

307
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iii. Use the local input-output rule near xg to get further information.
(See ?? on ?77.)

But, given a bounded input zg, we have that:

a being bounded, ax{ is also bounded

b being bounded, bx3 is also bounded

¢ being bounded, cxg is also bounded

e and d being bounded

altogether, we have that ax‘g + bzoz? + cxo + d is bounded and that the
answer to the ESSENTIAL QUESTION is:

THEOREM 15.1 Bounded Height Under a cubic functions, all
bounded inputs have bounded outputs.

and therefore

THEOREM 15.2 Offscreen Graph The offscreen graph of a cubic
function consists of just the local graph near co.

We now deal in detail with the third step.

EXISTENCE THEOREMS

Since cubic functions have no bounded oco-height input, the only way a
feature can change sign near a bounded input is when the feature is 0 near
the bounded input. In particular, essential O-feature inputs are bounded
inputs

e with a 0 feature,

e whose existence is forced by the offscreen graph—which, in the case of
cubic functions consists, by theorem 15.2, of only the local graph near oco.

None of the following theorems, though, will indicate where the O-feature

inputs inputs are located. The Location Theorems will be dealt with in

the last part of the chapter.

2 Concavity-sign

Given the function specified by the global input-output rule
CUBIC CUBIC(x) = ax® + b*z + cx +d
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recall that when z is near oo the Concavity-sign Near oo Theorem for
cubic functions says that:

e When a is + , Concavity-Sign|
e When a is — , Concavity-Sign|

= (U7 ﬁ)
= (ﬂ> U)

X near oo
X near oo

1. Since the concavity changes sign as x goes from the left side of oo
to the right side of oo across oo , the concavity also has to change sign as
x goes from the left side of co to the right side of co across the screen. In
other words, there has to be a bounded concavity-sign change input.

EXAMPLE 15.1. Given a cubic function whose offscreen graph is

Output
Ruler
w

Screen

n n(
Qutlying Space o

Input Ruler

Mercator view Magellan view
there has therefore to be a bounded concavity-sign change input,
Tconcavity sign-change- But since there cannot be a bounded oo-height input,
we cannot have

Output Ruleg
+o0

v
Y

Oftscreen space

Screen
Input

'

i

i

i

i

|

i

N\

o

i

i

w0 !
- Ruler

—00 +o0

Mercator view
and therefore we must have at least

Output Rule
pquao‘7 /
v
Screen
P
(@}
7 Offscreen space
- Input
Rule
- X Forced Concavity-sigh chaﬁ;
Mercator view Magellan view

So, based on the off-screen graph, we have
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THEOREM 15.3 Concavity sign-change A cubic function must
have at least one bounded concavity sign-change input.

2. On the other hand, based on the off-screen graph, a cubic function
could have any odd number of 0-concavity inputs. Based on the general local
input-output rule, we will see that a cubic function can have at most one
0-concavity input. But, at this point, all we know for sure is

THEOREM 15.4 0-Concavity Existence A cubic functions must

have at least one concavity-sign change input:

ZLconcavity sign-change = L0-concavity

3 Slope-sign

Given the cubic function CUBIC, 4, that is the function specified by the

global input-output rule

z —CUBIC CUBIC(x) = ax® + b*x + cx + d

recall that when x is near oo the Slope-sign Near co Theorem for cubic
functions says that:

e When a is + , Slope-Sign|, ,c.r o = (/5

e When a is — , Slope-Sign|, , .. .o = (\s\)

1. Since the slope does not changes sign as = goes through oo from the
left side of oo to the right side of 0o, the slope does not have to change sign
as x goes across the screen from the left side of co to the right side of co so
there does not have to be a bounded slope-sign change input:

EXAMPLE 15.2. Given a cubic function whose offscreen graph is

Output
Ruler
4

Screen

/7
/(
Outlying Space .

Input Ruler

Mercator view Magellan view
there is no need for a bounded slope-sign change input, Zsjope-sign change and
therefore we can have
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Screen

/

Outlying Space

Input Ruler

Mercator view Magellan view

2. On the other hand, based on just graphic considerations, a cubic
function could have any number of 0-slope inputs. Based on input-output
rule considerations, we will see that a cubic function can have only zero, one
or two 0-slope inputs. But, at this point, all we know for sure is

THEOREM 15.5 Slope-Sign Change Existence A cubic function
need not have a Slope-sign change input.

And thus also

THEOREM 15.6 0-Slope Existence A cubic function need not have
a 0-Slope input.

4 Extremum

From the optimization viewpoint, the most immediately striking feature
of an affine function is the absence of a forced extreme input, that is of
a bounded input whose output is either larger than the output of nearby
inputs or smaller than the output of nearby inputs. On the other hand, at
this point we cannot prove that there is no extreme input.

EXAMPLE 15.3. Given a cubic function with the offscreen graph:

Output Rulep
+o0
Offtscreen space
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Since there can be no co-height input, we cannot have, for instance, either one
of the following

Outpu Output

Ruler Ruler
+0 +oo

chal L(.\cal
oiput a gt il
Local =
m):::um Soreen |/ Screen
—0 \ —0
Input Input
—0 Xop-height o Rulel e Xoc-height o fuler
On the other hand, there is nothing ou
. +o0
to prevent a fluctuation such as: \
Local

maximum
output

Local
minimum .
output Screert,

—0 \
Inpun

Xmin ¥max oo Ruler

But no extremum input is forced: vt

Oftscreen space

Screen

Input
Toi Ruler

So, we have

THEOREM 15.7 Extremum Existence A cubic function has no

forced extremum input

5 Height-sign

Given the cubic function CUBIC,y 4, that is the function specified by the
global input-output rule

x —CUBIC CUBIC(z) = az® + b’z + cx +d
recall that when x is near co the Height-sign Near co Theorem for cubic

functions says that:
e When a is + , Height-Sign|, .. oo = (+,—)
e When a is — , Height-Sign|, ooy oo = (= +)
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1. Since the height changes sign as z goes from the left side of co to the
right side of 0o across oo , the height has also to change sign as x goes from
the left side of co to the right side of co across the screen. In other words,
there has to be a bounded height-sign change input.

EXAMPLE 15.4. Given a cubic function whose offscreen graph is

Output
Ruler

Screen

/ Outlying Space (

Input Ruler

Mercator view Magellan view
there has therefore to be a height-sign change input But since there cannot be
a bounded oo-height input, we cannot have

Output Ruleg
+o0

Mercator view
and therefore we must have

Output Ruleg
+o0

Oftscreen space

Input
Ruler

—00 +o0
X Forced 0-Height

Mercator view Magellan view

2. Moreover, because there is no bounded oco-height input where the height
could change sign, Theight-sign change has to be a bounded input where the
height is 0. As a result, we have that
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THEOREM 15.8 Height-Sign Change Existence A cubic func-
tions must have a Height-sign change input and

ZTHeight-sign change = L0-height

LOCATION THEOREMS

Previously, we only established the existence of certain essential bounded
inputs of cubic functions and this investigation was based on graphic con-
siderations. Here we will investigate the location of the essential bounded
inputs and this investigation will be based on the generic local input-output
rule.

6 0-Concavity Location

Given a cubic function, the global problem of locating an input where the
local concavity is 0 is still fairly simple.
More precisely, given a cubic function CUBIC, 4, that is the cubic

function specified by the global input-output rule

z —CUBIC CUBIC(x) = az® + b*x + cx + d

since the concavity near xg is the local square coefficient 3axg + b, in order
to find the input(s) where the local concavity is 0, we need to solve the affine
equation

Jax +b=0
by reducing it to a basic equation:
3ax+b—-b =0-0b

3ax = —b
3axr  —b
3¢ 3a
—b

Y7 34

So, we have:

THEOREM 15.9 O0-slope Location For any cubic function
CUBIC,p ¢4,
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—b
L0—concavity = 3a

In fact, we also have:

THEOREM 15.10 Global Concavity-sign Given a cubic function
CUBICa,b,c,da
e When a is positive,

Concavity-sign CUBIC|g ..\ here < 2= (N,N)

Concavity-sign CUBIC| s =(N,U
3a
Concavity-sign CUBIC|g, o\ here> =t = (U, U)
3a

e When a is negative,
Concavity-sign CUBIC |Everyvvhere <= = (U,U)
3a

Concavity-sign CUBIC| s = (y,N
3a

Concavity-sign CUBIC |Everyvvhere = = (N,N)
3a

The case is easily made by testing near oo the intervals for the corresponding
inequations.

7 0-Slope Location

In the case of affine functions and of quadratic functions, we were able to

prove that there was no shape difference with the principal term near oo by

showing that there could be no fluctuation:

e In the case of affine functions we were able to prove that there was no
shape difference with dilation functions

e In the case of quadratic functions we were able to prove that there was
no shape difference with square functions.

More precisely, given the cubic function CUBICy . 4, that is the function

specified by the global input-output rule

g —CUBIC CUBIC(z) = az® + bz + cx +d

since the slope near xq is the local linear coefficient 3ax? + 2bx + ¢, in order
to find the input(s) where the local slope is 0, we need to solve the quadratic
equation

3az? + 2bx + ¢



316 Chapter 15. Cubic Functions: Global Analysis

which we have seen we cannot solve by reduction to a basic equation and for

which we will have to use the 0-Height Theorem for quadratic functions,

keeping in mind, though, that

e For a as it appears in 0-Height Theorem for quadratic functions, we
have to substitute the squaring coefficient of 3az? + 2bx + ¢, namely 3a,

e For b as it appears in 0-Height Theorem for quadratic functions, we
have to substitute the linear coefficient of 3ax? + 2bx + ¢ namely 20b,

e For c as it appears in 0-Height Theorem for quadratic functions, we
have to substitute the constant coefficient of 3az? 4+ 2bx + ¢ namely c.
1. It will be convenient, keeping in mind the above substitutions, first

to compute

2b
Lo—slope for [3ax2+2bx4c] = — 2.3q

2b

" 6a
b

3a
= Z0—concavity for CUBIC

2. Then, still keeping in mind the above substitutions, we compute the
discriminant of 3az? + 2bz + ¢

Discriminant[3az? 4 2bx + ¢] = (2b)? — 4(3a)(c)
= 4b* — 12ac

3. Then we have:

e When Discriminant [3ax? +2bx +c] = 4b> — 12ac < 0, the local linear co-
efficient of CUBIC, [3axz? +2bx + ¢], has no 0-height input and therefore
CUBIC has no 0-slope input.

e When Discriminant [3ax? + 2bz + c] = 4b?> — 12ac = 0, the local linear
coefficient of CUBIC, [3az? + 2bx + ¢], has one 0-height input and
therefore CUBIC has one 0-slope input, namely

P Zo—slope for CUBIC = X0—height for [Baz2+2bz+c] — _3%a

e When Discriminant [3ax? + 2bz + c] = 4b?> — 12ac > 0, the local linear
coefficient of CUBIC, [3az? + 2bx + ¢], has two 0-height inputs and
therefore CUBIC has two 0-slope inputs., namely:

_ _ b 4b2—12ac
P Zo—slope for CUBIC = T0—height for [Baz2+2bz+c] — _%—’_ 2a
and
_ _ b 4b%2—12ac
P Xo—slope for CUBIC = T0—height for [Baz?+2bz+c] — T35 2a

In terms of the function CUBIC), this gives us:
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Shape type O
THEOREM 15.11 0-slope Location Given the cubic function Shape type I
CUBICa7b7C7d, when

eDisc. [3az? + 2bz + ] = 4b*> — 12ac < 0, CUBIC has no 0-Slope

input

eDisc. [3ax? + 2bx + ] = 4b? — 12ac = 0, CUBIC has one 0-Slope
input

eDisc. [3ax? + 2bx + ] = 4b%> — 12ac > 0, CUBIC has two 0-Slope
inputs

8 Extremum Location

The 0-slope inputs are the only ones which can be extremum inputs. So,
there will therefore be three types of cubic functions according to the number
of 0-slopes inputs:

1. When Discriminant [3az?+2bx +¢] = 4b* —12ac < 0 so that CUBIC
has no 0-Slope input, there can be no extremum input and we will say that
this type of cubic is of Shape type 0.

EXAMPLE r15.5.

Outpu Output
Ruler Ruler

\U N+ Outlying Space

Screen

Outlying Space
v/+

Screen

: n\-
Input ‘ Input

) Ruler
Ruler X0-concavity

X0-concavity

Cube coefficient positive Cube coefficient negative

Since cubic function of Shape type O have no 0-Slope input, their shape is
not like that of cubing functions.

2. When Discriminant [3ax? +2bx + ] = 4b? — 12ac = 0 so that CUBIC
has one 0-Slope input, there will still be no extremum input and we will say
that this type of cubic is of Shape type I.

EXAMPLE 15.6.
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Shape type II
Outpu
Ruler

Chapter 15. Cubic Functions: Global Analysis

t

Outlying Space

/U/+

Screen

Input
Ruler

X0-slope =X0-concavity

Cube coefficient positive

Output
Ruler
Offscreen Space

U\+\

Screen

Input
Ruler

X0-slope = X0-concavity

Cube coefficient negative

Since cubic function of Shape type I do have one 0-Slope input, their shape
is very much like that of cubing functions.

3. When Discriminant [3az?+2bz + c] = 4b*> — 12ac > 0 so that CUBIC
has two 0-Slope input, there will be one minimum input and one maximum
input and we will say that this type of cubic is of Shape type II.

EXAMPLE

Outpu
Ruler

r15.7.

Outlying Space v/ +

Screen

Cube coefficient positive

We can thus state:

Outpu
Ruler .
Outlying Space

UN\+

Screen

P Input
5 % Ruler

%

&

&

Y
R

Cube coefficient negative

THEOREM 15.12 Extremum Location Given the cubic function
CUBIC, 4, when
eDiscriminant [3ax? + 2bx + ¢] = 4b? — 12ac < 0, CUBIC has no
locally extremum input.
eDiscriminant [3ax? 4 2bx + ¢] = 4b*> — 12ac = 0, CUBIC has one lo-
cally minimum-maximum input or one locally maximum-minimum
input.
eDiscriminant [3az? + 2bz + | = 4b? — 12ac > 0, CUBIC has both
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> ZLlocally minimum-output

> locally mazimum-output,

9 0-Height Location

The location of 0-height inputs in the case of a cubic function is usually not
easy.

1. So far, the situation has been as follows:
i. The number of 0-height inputs for affine functions is always one,

ii. The number of 0-height inputs for quadratic functions is already more
complicated in that, depending on the sign of the extreme-output compared
with the sign of the outputs for inputs near oo, it can be none, one or two.

It follows from the Extremum Location Theorem that

iii. The number of 0-height inputs for cubic functions depends
a. On the Shape type of the cubic function,

b. In the case of Shape type II, on the sign of the extremum outputs
relative to the sign of the cubing coefficient

EXAMPLE 15.8. The cubic function specified by the global graph
B is of Shape Type O (No 0-slope
o input) and always has a single 0-
0 height input.
EXAMPLE 15.9. The cubic function specified by the global graphs are all

of the same shape of Type Il and the number of 0-height inputs depends on
how high the graph is in relation to the O-output level line.
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Output Output,
Ruler Ruler
Offscreen Space Offscreen Space
0 Screen Screen
0
Input
e XQ-output AUl X0-output .~ " X0-output
Output
Ruler
Offscreen Space
PScreen T
0
Input
I Ruler
X0-output ..~ " X0-output
"= X0-output

: Global Analysis

2. The obstruction to computing the solutions that we encountered when
trying to solve quadratic equations, namely that there was one more term
than an equation has sides is even worse here since we have four terms and
an equation still has only two sides. See 7?7 on 77



Chapter 16

Rational Degree & Algebra
Reviews

Rational Degree, 321 e Graphic Difficulties, 323 .

Rational functions are functions whose global input-output rule is of

the form

RAT _ POLYNuym(x)
x ———— RAT(z) = POLY pon(2)

where POLYNym(z) and POLYpen(z) stand for two positive-exponent poly-
nomial expressions.

EXAMPLE 16.1. The function whose global input-output rule is

TAB —3x? 44z -7
_TAB P AB(r) = X TR
. () 52t —38

is a rational function in which:
o POLYNum(x) is —32% + 4z — 7
e POLYpen(x) is —5x* — 8

1 Rational Degree

Because the upper degree of polynomial functions is what we used to sort
polynomial functions into different types, we now try to extend the idea of

321

Rational function
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rational (1(35‘-’;1”(*(3 o upper degree to the case of rational functions in the hope that this will also
regular rational function o1y 415 sort rational functions into different types.

Given a rational function whose global input-output rule is
RAT _ POLYNum(x)

———— S RAT () = ——+—+>
v @) = POy pon ()
the rational degree of this rational function is the upper degree of POLY nym ()
minus the upper degree of POLYpey,(x):

POLYNum(z)
Rat.Deg. of m = UppDeg. of POLYNym(z) — UppDeg. of POLYpep ()

Thus, the rational degree of a rational function can well be negative.

NOTE 16.1

The rational degree is to rational function very much what the size is
to arithmetic fractions in “school arithmetic” which distinguishes frac-
tions according to the size of the numerator compared to the size of the
denominator even though, by now, the distinctions are only an inconse-
quential remnant of history..

What happened is that, historically, the earliest arithmetic fractions were
“unit fractions” , that is reciprocals of whole numbers such as one half,
one third, one quarter, etc. Later came "Egyptian fractions”, that is
combinations of (distinct) unit fractions, such as one third and one fifth
and one eleventh, etc. A much later development were the "proper frac-
tions”, also called "vulgar fractions", such as two thirds, three fifths etc.
Later still, came “improper fractions” such as five thirds, seven halves,
etc. And finally “mixed numbers”, such as three and two sevenths. To-
day, none of these distinctions matters inasmuch as we treat all fractions
in the same manner.

However, while these “school arithmetic” distinctions are based on the
size of the numerator versus the size of the denominator and make no
real differences in the way we handle arithmetic fractions, in the case of
rational functions, the above distinction based on the upper degree of
the numerator versus the upper degree of the denominator will make a
difference—even though no major one—in the way we will handle rational
functions of different types.

In fact, by analogy with what we did with power functions, we will say
that
e Rational functions whose rational degree is either > 1 or < 0, are regular
rational functions,
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e Rational functions whose rational degree is either = 0 or = 1, are ex- "?‘3(‘/1)11,011?11 rational
unctrion

ceptional rational functions.

EXAMPLE 16.2. Find the rational degree of the function DOUGH whose
global input-output rule is
1z — 623 + 82% + 62 — 9
DOUGH | poUGH (z) — 122 — 01"+ 827 + 67
22 —5x+6
Since the rational degree is given by
POLY, x
Rat.Deg. of POLYJ'V;;:((JU)) = UppDeg. of POLYNym(x) — UppDeg. of POLYpey ()

and since, here,

o POLYNym(z) = +12* — 623 4+ 822 + 62 — 9

o POLYpen(z) = +12% — 52+ 6

we get from the definition of the upper degree of a polynomial that:

UppDeg. of + 1z? — 623 + 822 4+ 62 — 9 = Exponent of Highest Term
= Exponent of + 1z4
=4
UppDeg. of + 122 — 5z + 6 = Exponent of Highest Term
= Exponent of + 1z
=2
so that the rational degree of the rational function DOUGH is:
+1z* — 623 + 822 + 62 — 9

Rat.Deg. of 127 B 16 = Exponent of + 12* — Exponent of + 1z2
=4-2
=2

so that DOUGH is an example of a rational function of degree > 1 and
therefore of a regular rational function.

2 Graphic Difficulties

Finally, when there is one or more oo-height bounded input(s), beginners
often encounter difficulties when trying to interpolate smoothly the outlying
graph of a rational function.

The difficulties are caused by the fact that, when we draw the local
graph near co and the local graphs near the co-height inputs from the local
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input-output rules, we are only concerned with drawing the local graphs
themselves from the local input-output rules. In particular, when we draw
the local graph near oo and the local graphs near the oo-height inputs,
we want to bend them enough to show the concavity but we often end up
bending them too much to interpolate them.

But then, what often happens as a result is that, when we want to
interpolate, the local graphs may not line up well enough for us to interpolate

them (smoothly).

EXAMPLE 16.3.

Given the rational function whose
offscreen graph was drawn so as to
show the concavity.

Here is what can happens when we
attempt to interpolate

Of course, this is absolutely impos-
sible since, according to this global
graph, there would be inputs, such
as xgp, with more than one output,

Y1, Y2, ...

Output
Hu/eg\
+o0

~ /nout

>
+o0 Ruler

Output
/?u/eg\
+00

< /nput

V3

»2
Y1

—0

>
+0 Ruler

. /nput

+ oo, Ruler
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Output
A Ruler I i
But if we unbend the local graphs A ,! ,!
just a bit as in T
| |
| |
| |
|
—00 | |
! ! . /nput
—o0 +Oo,/-?z//e/
Output
/?u/eg\ i g
. — +oo | ,I
we have no trouble interpolating: N A
| |
| |
| |
| |
!, [
—00 | |
! ! . /nout
—0 +Oo,ﬁu/9/

The way to avoid this difficulty is not to wait until we have to interpolate
but to catch any problem as we draw the local graphs by mentally extending
the local graphs slightly into the transitions.

EXAMPLE 16.4.

. . . Outout
Given the rational function whose HZ/;U\ R
offscreen graph was drawn do as to +oo /: /:
show the concavity Lo
L —1. _l_. 1. _=>—
| |
| |
I I
—0 \./ i/
! ! ~ /nout
—o0 +oo’/-'r’z//e/
we can already see by extending the Output
. . - Fule N
local graphs just a little bit into the tob /! /!
transitions that this will cause a lot 8
of trouble when we try to interpo- L =T ==
late the local graph: o
I I
—0 i/ i/
! ! . /nput
—o0 +w,ﬁu/e/
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So, here, we bend the local graph ZZZ;”:
near oo a little bit more and we un- +o0 ’: ,:
bend the local graphs near the co- [
. . . . e S B
height inputs a little bit: i
I I
i
Y [
| | . /nput
—o0 +00’Hu/e/
Output
We check again by extending the lo- R_‘fg\ J. l.
cal graphs just a little bit into the T
transitions: L 1 1. e
I I
i
I |
W [
! ! < /nout
S +Oo,/i’u/e/
Output
/?u/eA ' '
and indeed now we have no trouble +o0 J: I:
interpolating: /i /@
IR S R RV
I I
]
I |
W [
! ! >//7,01/f
—o0 40 Ruler
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Rational Functions: Local
Analysis Near oo

Local I-O Rule Near oo, 327 e Height-sign Near co, 330 e Slope-sign Near
00, 332 e Concavity-sign Near oo, 335 e Local Graph Near oo, 339 .

To do local analysis we work in a neighborhood of some given input
and thus count inputs from the given input since it is the center of the
neighborhood. When the given input is oo, counting from oo means setting
x < large and computing with powers of large in descending order of sizes.

Recall that the principal term near oo of a given polynomial function
POLY is simply its highest power term which is therefore easy to extract
from the global input-output rule. The approximate input-output rule near

oo of POLY is then of the form

x| _POLY . pory

= near 0o (@), near 0o = Highest Term POLY + [..]

However, the complication here is that to get the principal part near oo of a
rational function we must approximate the two polynomial and divide—or
the other way round—and the result need not be a polynomial but can also
be a negative-exponent power function and the main issue will be whether

to do the approximation before or after the division.

1 Local Input-Output Rule Near co

Given a rational function RAT, we look for the function whose input-output
rule will be simpler than the input-output rule of RAT but whose local graph
near oo will be qualitatively the same as the local graph near co of RAT.

327

extract
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More precisely, given a rational function RAT specified by the global

input-output rule POLY (@)
RAT Num\L

— > RAT () = ————+——

v @) = POV pen(2)

what we will want then is an approximation for the output of the local

input-output rule near oo POLY Num(2)
RAT Num \*
_ RAT(:E)|z near co POTDT::(I‘)

from which to extract whatever controls the wanted feature.

$|J? near oo

I near oo

1. Since the center of the neighborhood is co, we localize both
o POLYNum(z)
and

e POLYpen(x)
by writing them in descending order of exponents.

POLY nym(%) Localize near o POLY nym(x) |x near o
POLYpe,(x) Localize near o POLYpen(¥)|, pear o0

2. Depending on the circumstances, we will take one of the following
two routes to extract what controls the wanted feature:
B The short route to Princ. TERM RAT () |, Lear 00> that is:
i. We approximate both POLYNum ()|, pear oo @04 POLYDen ()|, pear oo
to their principal term—that is to just their highest size term—
which, since z is near oo, is their highest exponent term:

POLY yyy(x) POLYN“m(x)|x near oo Princ. TERM y(x) |x near ot []
POLYpey(x) POLYDen(%)], pear o Prine. TERMpn()|, pear o+ L]

ii. In order to divide Princ.TERMNum(z)

, that is the prin-

I near oo

cipal term near oo of the numerator of RAT by Princ. TERM en(z)

Y
X near oo
that is the principal term near co of the demominator of RAT we

use monomial division

+m
ar a .\ .
= —x Ot where +m © +n can turn out positive, negative or 0

brtn b

Princ. TERM ()

I near oo

Princ. TERM RAT (x)

T near oo Princ.TERMDen (‘73)

X near oo

coef. Princ. TERM .. (x)

Z near co | xUppDeg.POLYNum(a:)—UppDeg.POLYDen(1:)

coef. Princ. TERM . (x)

I near oo
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coef. Princ. TERM y, ()

— Z near oo | xRatDeg.RAT(a:)

coef. Princ. TERM [, (x)

I near oo

The resulting monomial is Princ. TERM RAT (z)
X near oo
the principal term of the rational function RAT near oo:

Princ. TERM (%) |
Princ. TERMp,(x)|

POLY nym(x) POLY yyym(x) |,\" near o
POLYpen(x) POLYpen(x) |

X near oo+ []

X near o v near o0 -]

apIAIQ I

Princ. TERM RAT(x) +1...]

X near oo

B The long route to Princ. PART RAT () |, noar oo

i. In order to divide POLYNum(2)|, near oo 0¥ POLYDen ()|, poar oo
we set up the division as a long division, that is POLYpey ()]
dividing into POLYNum(Z)|, pear oo

POLY Nyy(%) Localize near o POLY pyym(x) |x near oo
POLYpen(x) Localize near oo POLY pey(x) |x near oo

I near oo

POLYpey, (x) POLY Ny (%)

X near oo )

X near oo

ii. We approximate by stopping the long division as soon as we have
the principal part that has the feature(s) we want:

POLY nym(x) Localize near « POLY Nyy(x) |

POLYpo,(x)  miscaizenear® FPOLYDen(X)|, oo
3 Princ.PARTRAT(x) 4]
POLYpen ()] ) POLY yym (x)|mmo e

3. Which route we will take in each particular case will depend both on
the wanted feature(s) near oo and on the rational degree of RAT and so we
will now look separately at how we get Height-sign|
and Concavity-sign|

T near oo’ Sl0p6_81gn’m near oo

T near oo
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LOCAL ANALYSIS NEAR oo

When the wanted features are to be found near oo, the rational degree
of the rational function tells us up front whether or not the short route will
allow us to extract the term that controls the wanted feature.

2 Height-sign Near co

No matter what the rational degree of the given rational function RAT,
Princ. TERM RAT () |, yoar oo Will give us Height-sign|, ... ., because,
no matter what its exponent, any power function has Height-sign|, ... oo-
So, no matter what the rational degree of RAT, to extract the term responsi-

ble for Height-sign|, ... -, We can take the short route to Princ. TERM RAT(x) |, Lear oo

POLY () POLY yun(®)|, .y, T Prine: TERMum() | e -]
i. Approximate

POLYpen() | POLY pen(@)|.. 1o o Princ. TERMpgp(x)|

)Cl’leal‘00+ []

epInIg Il

Princ. TERM RAT(x) +[...]

X near oo

EXAMPLE 17.1. Given the rational function DOUGH specified by the
global input-output rule
DOUGH 4122 — 62° + 8z% 4 62 — 9

o 2N DOUGH () =

find Height-sign DOUGH|,, ,car oo-
a. We localize both the numerator and the denominator near oo—which
amounts only to making sure that the terms are in descending order of ex-

—322—-bx+6

ponents.
+12°—60°+8x2+6x—9 +12x°—6:+8x*+6x-9
322 5146 322 5346

b. Inasmuch as Princ. TERM DOUGH (x) |, near .o Nas Height no matter
what the degree, in order to extract the term that controls Height-sign|

we take the short route to Princ. TERM DOUGH (z) |
i. We approximate

T near oo

x near oo”
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- " : 5
+12x°—6x+8x?+6x-9 +12°-6:>+8x*+6x-9 126 + [..]

32 5x+6 332 5x+6 i. Approximate TN

that is we approximate
e the numerator +12x° — 623 4+ 822 4 62 —9 to its principal term, —122°

e the denominator —3x2 — 52 + 6 to its principal term, —3x>
ii. And then we divide:

5 , 5
H12X0—6x°+8x2+6x—9 +120°—6x°+8x2+6x-9 +12x7 + [..]
3x25x+6 “3x%5x+6 32+ [
o
<.
)
—13—2x3 + ]
where
+122° _ +12-z-z-2z-x-x
—3z2 -3z
12 5o
=—-——=
3

The more usual way to write all this is something as follows:
+1225 — 623 + 822 + 62 — 9

DOUGH

x’:r nearco DOUGH(.%‘)’I near co 322 —5x+6 e o

B +122° — 623 + 822 + 6z — 9|x near 0o

—37% — b + 6|ac near co

_ +122° — 62° + 8z% + 62 — 9

N —322 -5 +6

_4122° 4[]

=322+ ..

12

= —?335_2 —+ []
Whatever we write, the principat term of DOUGH near oo is —1—32353 and it
gives

Height-sign DOUGH |, 1ear oo = (—+)
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EXAMPLE 17.2. Given the function PAC specified by the global input-
output rule

—1223 4
xLPAC(x)— v AT

 4dad — 62t — 1722 — 22+ 10
find Height-sign PAC|, ,ear -
Inasmuch as Princ. TERM PAC(z) |, ear oo Nas Height no matter what the
degree, in order to extract the term that controls Height-sign|, ..., o, We take
the short route to Princ. TERM DOUGH (z) |

T near oc0”

3
], ear oo __pAC PAC(2)|, near 0o = 455 — 61541%_—577;2—’;4235 +10
X near oo
B —122% + e + 4|, o o
C Hdad — 62t — 1722 — 22 + 10|, jeor oo
12z 4[]
C T[]
_ +142x+3@+5 1]
= 3272 + []
and we get that
Height-sign PAC/|, 1ear oo = (— —)

3 Slope-sign Near oo

In the case of Slope-sign RAT|, . or o> there are two cases depending on
the rational degree of the given rational function:

B If the rational functionRAT is either:
— A regular rational function, that is of rational degree > 1 or < 0
or
— An ezxceptional rational function of rational degree = 1,
that is not an exceptional rational function of rational degree = 0, then
Princ. TERM RAT (z) will be a power function that will have
T near oo
Slope near co and so in order to extract the term that controls Slope-sign|
we take the short route to Princ. TERM RAT (x)

X near oo

I near oo
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Localize near o POLYNum(x)|x near o Princ. TERMyym(x) |x near oo L]
CEEE> POLYpor®)], e Prine. TERMpen(0) peas - 1]
X near oo

POLY Nyyu(X)
POLYpey(x)

apIAIQ I

Princ. TERM RAT(x) +1[...]
X near oo
EXAMPLE 17.3. Given the rational function SOUT H specified by the
global input-output rule
SOUTH —322 —5x 46
———— SOUTH (x) =
. (@) +122% — 623 + 822 4+ 62 — 9
find Slope-sign of SOUT H near oo
i. We get the local graph near co of SOUTH
a. We have
SOUTH —32° -5z +6
SOUTH =
x’x near oo (x)’x near oo —|—12(IZ5 —6[133 —I—8(IZ2 +6!IZ—9 » mear oo
— _3x2 _5x+6|az near oo
+1225 — 623 4+ 822 + 62 — 9|, 1ear oo
We now proceed with the two steps:
_3x2 5546 [ Approximate 352 + [...]
12063 +8x2+6x-9 | Approximate +12x° + [...]
- % x3+ [...]
b. The more usual presentation is:
SOUTH ~32% -~ 52+ 6
——— SOUTH =
x’z near oo (x)’z near oo —|—12£L‘5 —65[)3+8£C2+6$C—9 » near oo
_ —32° _5$+6|x near oo

+1225 — 623 4 822 + 6z — 9|

T near oo
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We approximate —32% =5z + 6|, . and
+1225 — 623 + 822 + 62 — 9|

 near co

—322 + [...]
+12x° + [...]
and then we divide:

_ =3 25
=" +[...]

1
= —ZQU_ES —+ []
c. Since the degree of the power function

1
z LWER  pOWER(z) = —q?

which approximates SOUT H near oo is < 0, the power function POW ER
has all three features, concavity, slope and height. (This was of course to
be expected from the fact that the rational degree of SOUTH is < 0.)
ii. We get

Slope-sign of SOUTH near oo = (,/,\)

B If the rational function RAT is an exceptional rational function whose ra-
tional degree = 0, then Princ. TERM RAT(x) |, Lear oo Will be an excep-
tional power function with exponent = 0 and Princ. TERM RAT () |, 1oar oo
will not have Slope and so in order to extract the term that controls

Slope-sign|, ,oar oo We Will have to take the long route to a Princ. PART RAT(x) |, 1oar oo
that has Slope:
POLY yyy(x) Localize near o POLY Nyy(x) | v near oo
POLYpey(x) © near o Localize near o POLY pep(x) |x near oo
% Princ.PART RAT(x) 4[]

X near o

POLYpey, (x) POLY Ny (%)

X near oo )

X near oo
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4 Concavity-sign Near oco

In the case of Concavity-sign RAT|, .. oo, there are two cases depending

on the rational degree of the given rational function.

B If the rational function RAT is a regular rational function, that is if the
rational degree of RAT is either > 1 or < 0, then Princ. TERM RAT (z) |
will be a regular power function, that is a power function whose exponent
is either > 1 or < 0 and then, in either case, Princ. TERM RAT(x) |, ear oo
will have Concavity and so in order to extract the term that controls
Concavity-sign|, ... oo We take the short route to Princ. TERM ., (%) |, pear o

POL YN ”m(x) POL Yy “m(x) |x near o Frinci TERMN”m(x) |x near 00+ -]

POLYpen(x) | POLYpen(Y)), pear o TIEIES Princ. TERMpen(X)), near oo+ [-+-]

T near oo

opIAIg "Il

Princ. TERM RAT(x) +1...]
X near oo
EXAMPLE 17.4. Given the rational function SOUT H specified by the
global input-output rule
SOUTH —322 — 51+ 6
—— SOUTH (x) =
_ o (z) +122% — 623 + 822 + 62 — 9
find Concavity-sign of SOUTH near co
i. We get the local graph near co of SOUTH
a. We have ,
SOUTH —3x° —5x+6
——FF  SOUTH =
x’x near oo ($)|:c near oo _|_12$5 _ 6$3 + 8$2 + 6$ _ 9 + near oo
— _3'%.2 - 5x+6‘$ near oo
© +122% — 623 + 822+ 62 — 9], a0

We now proceed with the two steps:

—3x°—5x+6 | Approximate 332+ [..]
+12x°-6x*+8x*+6x-9  [__Approximate +120° +[...]
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b. The more usual presentation is:

SOUTH 322 —-52+6
x|z nearoo 7 SOUTH(I‘)‘Q& near co _|_12$5 — 623 + 2 +6x—9
T near oo
_ —3332 —5$+6|$ near co
+1225 — 623 4+ 822 4+ 62 — 9|, 1ear oo
We approximate —322 — 5z + 6|x hear oo and
+122° — 623 + 8x2 + 6 — 9|x near oo
B —3z2 + [...]
+1225 + [...]
and then we divide:
_ =3 25
= 2" + 1.
1
= —Ex_?’ + []

c. Since the degree of the power function

1
o LOVER  pOWER(z) = —q

which approximates SOUT H near oo is < 0, the power function POW ER
has all three features, concavity, slope and height. (This was of course to
be expected from the fact that the rational degree of SOUTH is < 0.)
ii. We get

Concavity-sign of SOUT H near co = (N, N)

B If the rational function RAT is an exceptional rational function that is if
the rational degree of RAT is either = 1 or = 0 then Princ. TERM RAT (x) |

T near oo
will be an exceptional power function with exponent either = 1 or = 0
(Chapter 7) and in both cases Princ. TERM RAT () |, ,our oo Will not
have Concavity and in order extract the term that controls Concavity-sign|, .. oo

we will have to take the long route to a Princ. PART RAT (x) |
that does have Concavity.

I near oo
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POLYNyyp(X)

POLYp,,(x)

5% 4% +9

x> 4x+3

5 5x%4x+9
2 4x+3
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POLYNun(®)], near

+ near o NEEEATERD>  POLYDen(0)|, e

% Princ.PART RAT(x)

POLYpey (x) ) POLYyu ()

X near oo X near oo

EXAMPLE 17.5. Given the rational function BAT H specified by the
global input-output rule

BATH 423 — 52+ 2 +6
% —

BATH(z) = +a? —4x+3

find Concavity-sign BATH |, ear oo-

a. The localization step is to localize both the numerator and the denom-
inator near co—which amounts only to making sure that the terms are in
descending order of exponents.

3 2
S| oo
24083 |, o

b. Since Princ. TERM BATH () |, near oo
tion step to get Concavity-sign BATH |, ... .o Must take the long route
to a Princ. PART BATH () |, near oo that has Concavity:
i. We set up the division as a long division:
+2% — 4z + 3 dividing into +2% — 522 + 2 + 9.

has no Concavity, the extrac-

+x3—5x2+x+9| +x3 + [...]
X near +o0
2 2
+x“—4x+3 |)C near +o +x“+[...]
+x+[...]

P —4r+3 r+x3 —5x2 +x 49

ii. We approximate by stopping the long division as soon as we have the

X near oo

+1.]
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principal part of the quotient that has Concavity:
+00—5x>+x+9 |

X near +oo

+x24x+3 |

x near +oo

x—1—6x 4[]
+x2—4x+3 ) 2 5¢2 +x 49
+x° —4x? +3x
x> —x? —2x +9
X% +4x -3
0x? —6x +12

that is we stop with —62 ! since it is the term responsible for Concavity.
The more usual way to write all this is:

BATH 423 — 522+ 249
BATH(‘T)LE near co +$2_4$+3

+2% — 5z +z + 9
+ZE2—4ZE—|—3’$ near co
+23 -5+ +9
+22 —4x+3

x|$ near oo

T near oo

I near oo

and then we divide (in the /atin manner):

+zr -1 —6z7! +[.]

+2% —4z +3 ) +23 B2 4+x 49
+23 —4x? +3z
03 —z? —2x +9
—x? +4xr -3
0z?  —6z  +12

Whichever way we write it, Princ. PART BATH () |, jear oo = T2 —1—
62! and its third term, —62~!, gives

Concavity-sign BATH| = (N,V)

T near oo



5. Local Graph Near co 339

5 Local Graph Near oo

In order to get the local graph near oo, we need a local input-output rule that
gives us the concavity-signNand therefore the slope-sign and the height-sign.

So, the route we must take in order to get the local graph near co is the
route that will get us the concavity-sign near co.

EXAMPLE 17.6. Given the rational function SOUT H whose global input-
output rule is

SOUTH —322 5246
—— SOUTH =
v (2) +1224 — 623 + 822 + 62— 9

find its local graph near co.
i. We get the local input-output rule near co as in EXAMPLE 1.

We have:
SOUTH —322 5246
s near oc » SOUTH @)y near o0 = 795 — 625 4 822 4 62— 9
T near oo
— _3:1/‘2 — 5x+6|$ near oo
C 1225 — 623 + 822 + 62 — 9], oo oo

We approximate separately the numerator and the denominator:
—322 + [...]
+122° + [...]

We divide the approximations:

_ =3 25
= 2" +[..]

1 _
=4 541

ii. Since the degree of the power function

1
z LOER  pOWER(z) = —q

is < 0, the power function POW ER is regular and has both concavity and
slope. So, the local graph of the power function POW ER near oo will be
approximately the graph near oo of the rational function SOUTH.

The local graph near oo of the rational function SOUTH is therefore:
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Outout
Ruler,
+00
0——] —
Screen
—00
Input
—o +o0 Ruler
EXAMPLE 17.7. Given the rational function DOUGH whose global input-
output rule is
1224 — 62° 4 822 + 62 — 9
» POUGH  DOUGH (z) = T2 0% o 1 bv
—322 —-5x+6

find its local graph near oco.
i. We get the local input-output rule near co.

We have: \ )
5 .
:C|x near oo et DOUGH('TNx near co e _36::2 j_58::_|__g b =9 R
#1225 — 62 + 827 + 62 — 9] o o
B =322 = 52 + 6, near 0o
We approximate separately the numerator and the denominator:
+122° + [..]
T 32t 4[]
We divide the approximations:
+12
= —_—3:65 S
= 4o 4[]

ii. Since the degree of the power function

LOWER . pOWER(z) = —4z+?
is > 1, the power function POW ER is regular and has both concavity and
slope. So, the local graph of the power function POW ER near oo will be

approximately the graph near oo of the rational function DOUGH.
The local graph near oo of the rational function DOUGH is therefore:
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EXAMPLE 17.8. Given the rational function BAT H specified by the global
input-output rule

3 2
— 5z 46
o, BATH BATEl(x):+x +x z+
+a? — 4z + +3

as in EXAMPLE 1, find the local graph near co.

i. We get the local input-output rule near oo that gives all three features as

we did in EXAMPLE 1:

BATH —_
T near co BATH(x)‘x near oo =+r+5+27x 1+[]

ii. So the local graph near co of the function BATH is

z|

Output A /
Ruler-«o ,
,/ < Screery--------
—a0 //
w /nput

»
—oo +o0 Ruler



342 Chapter 17. Rational Functions: Local Analysis Near oo



Chapter 18

Rational Functions: Local
Analysis Near xg

Local I-O Rule Near zg, 344 e Height-sign Near xq, 346 e Slope-sign Near
xg, 349 e Concavity-sign Near xg, 350 @ Local Graph Near xg, 351 .

Doing local analysis means working in a neighborhood of some given
input and thus counting inputs from the given input since it is the center
of the neighborhood. When the given input is xg, we localize at xg, that is
we set x = xg + h where h is small and we compute with powers of A in
descending order of sizes.

EXAMPLE 18.1. Given the input 42, then the location of the number
+2.3 relative to +2 is +0.3:

343
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A Outputs Offscreen

Output level band ——)

\L Screen

(Neighborhood of -+2]

Sided WL
Graph|Place™
§ ? J

: In:puts

)

= -
[Neighborhood of OOV

Recall that the principal part near xg of a given polynomial function
POLY is the local quadratic part

7| %Powwmmoz[ ]+[ ]h+[ ]h2+[...]

Input levef ban

T near xg
However, the complication here is that to get the principal part near zq of a
rational function we must approximate the two polynomial and divide—or
the other way round—and the result need not be a polynomial but can also
be a negative-exponent power function and the main issue will be whether
to do the approximation before or after the division.

1 Local Input-Output Rule Near x

Given a rational function RAT, we look for the function whose input-output

rule will be simpler than the input-output rule of RAT but whose local graph

near xg will be qualitatively the same as the local graph near xy of RAT.
More precisely, given a rational function RAT specified by the global

input-output rule

_ POLYNuym(x)

~ POLYpey(x)

what we will want then is an approximation for the output of the local

x AT RAT(2)
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input-output rule near xg

RAT POLYNym(x)
$|a: near xg 7 RAT(LL‘) |x near zo POLYDZT:(Z')
from which to extract whatever controls the wanted feature.

1. Since the center of the neighborhood is xg, we localize both
e POLYNum(z)

and

o POLYpen(2)

by letting  <— zg+h and writing the terms in ascending order of exponents.

POLY, Num(x) POL YN ”m(x) |x near x,
POLY pen(x) POLYpen(x) |x near x,

2. Depending on the circumstances, we will take one of the following
two routes to extract what controls the wanted feature:

B The short route to Princ. TERM RAT () |, car 4,» that is:
i. We approximate both POLYNum (Z)|, near 2, 80d POLYDen (), near 2,

to their principal term—that is to just their lowest size term—which,
since x is near oo, is their lowest exponent term:

POLY yjyym(x) POLY Nyy(x) |x nearx, NNATIOAEC  Princ. TERM yyy(x) |, near x0+ [...]
POLY pey(x) POLYpen®)|, pear v, NNSTISGED>  Princ. TERMpey(x)|

xnearx0+ []
ii. In order to divide Princ. TERM Num()

T near xo

, that is the prin-

T near xg

cipal term near xg of the numerator of RAT by Princ. TERM , en(z)
that is the principal term near xg of the denominator of RAT we
use monomial division

ah™™ A, e . .

i = Eh where +m & +n can turn out positive, negative or (

b
T near xg

The resulting monomial is Princ. TERM RAT (x)

, that is

T near xg
the principal term of the rational function RAT near xg.
7 3 +
POLY nyyn(X) P()L}.\'zmz(»\’)ly near xo Princ. TERMyim(x) |x near xo [..]
POLY pgy(x) POLY pen®)], pomr v, Prine. TERMpey(3)|, near v, [-+]

apIAIQ I

Princ. TERM RAT(x) +1...]

X near xq
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However, Princ. TERM RAT (x) is useful only in four cases:
T near xg

— When it is a constant term and what we want is the Height-sign,

— When it is a linear term and what we want is the Height-sign
or the Slope-sign,

— When it is a square term,

— When it is a negative-exponent term.

B The long route to Princ. PART RAT(z) |, pear 2o

i. In order to divide POLYNum ()|, near 2o 0¥ POLYDen (), near zo»
we set up the division as a long division, that is POLYDpen ()|, near o,
dividing into POLYNum(Z)|, near , a0d since these are polynomials
in h, in order to be in order of descending sizes, they must be in
order of ascending exponents.

ii. We approximate by stopping the long division as soon as we have
the principal part that has the feature(s) we want:

iii. The difficulty will be that we will have to approximate at two
different stages:

— While we localize both the numerator and the denominator,
— When we divide the approximate localization of the numerator

by the approximate localization of the denominator

So, we will have to make sure that the approximations in the lo-
calizations of the numerator and the denominator do not interfere
with the approximation in the division, that is that, as we divide, we
do not want to bump into a [...] coming from having approximated
the numerator and the denominator too much, that is before we can
extract from the division the term that controls the wanted feature.
3. Which route we will take in each particular case will depend both on
the wanted feature(s) near xp and so we will now look separately at how we
get Height-sign| Slope-sign| and Concavity-sign|

Z near oo’ I near xro X near xro

LOCAL ANALYSIS NEAR z,

When the wanted features are to be found near zq, the rational degree of
the rational function does not tell us which of the short route or the long
route will allow us to extract the term that controls the wanted feature.

2 Height-sign Near x

If all we want is the Height-sign, then we can always go the short route.
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EXAMPLE 18.2. Let SOUTH be the function specified by the global
input-output rule

2 I
SOUTH — v oz + 6
H K —_
xr ———— SOUTH (x) x4 — 23 — 10224+ 2 — 15

Find the height-sign of SOUT H near 42

i. We localize both the numerator of SOUTH and the denominator of
SOUTH near +2

2
5 6
p SOUTH SOUTH (42 +h) = T OT +
x4 — 3 — 1022 4+2x—-15 rtoih
2? + 52+ 6],

at — a3 — 1022 + 2 — 15|, 9.y
(424 h)? +5(+2 4 h) + 6
(+2+h)* — (424 h)2 —10(+2+ h)2 + (+2+ h) — 15

ii. Since we want the local input-output rule that will give us the height-sign,
we try to approximate before we divide:

[(+2)2+5-(+2)+6] +[..]
[(+2) — (+2)3 — 10(+2)2 + 2 — 15] + [..]
[+4+10+6]+[.

[ +16—8—40+2—15] +[..]

420+ [
454
20
— *E + []
and since the approximate local input-output rule near 42 is
p SOUTH | GOUTH(+2 +h) = — 22 4 [..]

45
and the local input-output rule includes the term that gives the Height-sign

near +2
20

45
we have:
Height-sign SOUTH near +2 = (—.—)
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EXAMPLE 18.3. Let SOUTH be the function specified by the global
input-output rule
SOUTH 22 + 5z +6
v SOUTH(z) = x4 — 23— 1022 + 2 — 15
Find the height-sign of SOUTH near —3
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near —3

2
SOUTH_3 z°+5r+6
h—— SOUTH(-3+h) =
(=3+h) x4 — 23— 10224+ 2 —15

r+——3+h

2? +52+6[, 4.,
zt — 23 — 1022 + 2 — 15, 4.4
(=3+h)2+5(—=3+h)+6
(=3+h)*—(=3+h)3—10(-=3+h)2+ (=3 +h) —15
ii. Since we want the local input-output rule that will give us the height-sign,
we try to approximate to the constant terms:

[(—3)2 +5-(=3) + 6] + [+]
[(=3)* = (=3)3 —10(-3)> =3~ 15] + [..]
o [+9-15+6) + 1
C[+st+2m-90-3-15] +[.]

o] -1
[o] + 1.

We cannot divide as we could get

= any size
iii. We therefore must approximate the localizations at least to h
[o] +[2- (=3) +5]n+[.]
0] + [ +4(-3)% - 3(=3)2—10-2(=3) + 1] h + [..]
[-6+5]n+1.]
[ — 108 - 27460+ 1]h + [..]
[-1]n+1
[-7a]n+ 1.
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 —h+ ][]
- —T4h +[..]
We divide

1

and since the approximate local input-output rule near —3 is
SOUTH_ 1
p 2T SOUTH(~3+h) = g L

and the local input-output rule includes the term that gives the Height-sign

near —3
L1
74

we have:

Height-sign SOUTH near — 3 = (+,+)

3 Slope-sign Near x

EXAMPLE 18.4. Let SOUTH be the function specified by the global
input-output rule
SOUTH 22 +5x+6

o SOUTH (x) = x4 — a3 — 1022 + 2 — 15
find the slope-sign of SOUT H near +2
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near +2 and since we want the approximate local input-output rule
for the slope-sign, we will approximate to h:

];2 x +
SOUTH — > 6
+ 4>SO(J,1H( ) x4 — 3 — 1022 4+ 2 — 15

‘m——i—?-ﬁ-h

B a? +52+6[, .,
Coat— 23— 1022 + 2 —15), oy

(+2+h)? +5(+2+h) +6
(+2+h)t = (+2+h)3 —10(+2+ h)2 + (+2+ h) — 15

[(+2)2 +5-(4+2) + 6] + [2(+2) + 5]h +[..)]
[(+2)% = (+2)3 — 10 (+2)2 + (+2) — 15] + [4(+2)? = 3(+2)2 — 10- 2(+2) + 1] p + [.-]
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_ [+20] 4 [+ 9]+ 1
[-45]+[-19)n+11

ii. We set up the division with

[—45] + [—19]h + [...]  dividing into  [+20] + [+9]h + [...]
that is:
9-45]—[19-20
NP LUV

—45 —19h +[...] ) +20  +9h  +[.]
+20 +3520%, 4[]

9-45]_[19-20
0 BN, ]

And since [9 - 45] — [19 - 20] = 405 — 380 = 425, the approximate local input-

output rule near 42 is:

SOUTH 20 25
s

h SOUTH(+24+h)=—— — —
(+2+h) 45 452 * [
and the term that gives the slope-sign near +2 is
%
452
so that

Slope-sign SOUTH near +2 = (\.\)

4 Concavity-sign Near xg

EXAMPLE 18.5. Let SOUTH be the function specified by the global
input-output rule

SOUTH z% 4+ 5246
* SOUTH (w) = x4 — a3 — 1022 + 2 — 15
find the concavity-sign of SOUTH near +2
i. We localize both the numerator of SOUTH and the denominator of
SOUTH near +2 and since we want the approximate local input-output rule
for the slope-sign, we will approximate to h?:

2
SOUTH z°+5r+6
24+ h —"""5SOUTH(+2+h) =
e (+2+h) xd— 23 —1022+2—15

r—+2+h
2?4504 6[, oy,
x* — 23 — 1022 + x — 15|

z+2+h
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- (+2+ h)2 +5(+2+ h) +
(2 +h)t = (42 + h)3 — 10(+2 + h)? (+2 +h)—15
[(+2)2 +5-(+2) + 6] + [2(+2) + 5]h + [ ]h2
[(+2)% = (+2)8 =10 (+2)2 + (+2) — 15] + [4(+2)? — 3(+2)2 — 10 2(+2) + 1] 0 + [6(+2)2 - 3(+2) — 10]n2 + [..]
_ [+20] +[+9]n+[1]n2
[- 5]+ [-19)n+[s]n2 +

ii. We set up the division with

—45 + —19h + 8h2 +[...]  dividing into  +20 + 9h + h?
but carry it out /atin style (that is, we write the result of the multiplication as
it comes out instead of the opposite of the result.)

9-45]—[19-20 +45[45—8-20]—19[[9-45] —[19-20
_%) _ I }45[2 Ih _[ [ }453[[ -1 ”}h2 ]
—45 —19h +8h% +[..] ) +20 +9h +h?
_|_20 _|_19 20h 8 20h2 +[]
9-45]—[19-20 45-8-20
0 +[]4#h AD-8202 +[.]
Lo 45]45[219 20, 1910:451-[19-20] 5 2 ]
L0k N {+45[45—8~20]11592[[9~45]—[19~20H} 12 [
And since +45[45_8’20111592H9’45]_[19'20” = 235021, the local input-output rule
near +2 is:
SOUTH 2 20 25 2401 4
h THH2+h)=—— - —h— h
——— > SOUTH(+2+h) = == = 15h = b + ]
and the term that gives the concavity-sign near +2 is
2401,
452

so that
Concavity-sign SOUTH near +2 = (N,N)

5 Local Graph Near x

EXAMPLE 18.6. Let SOUTH be the function specified by the global
input-output rule

2
SOUTH z°+ 5+ 6
r — SOUTH
() = 2t — 23 — 1022 4+2—-15
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find the local graph of SOUTH near +2
Since, in order to get the local graph near +2 we need all three features near
+2, height-sign, slope-sign and concavity-sign, we need to get the approximate

local input-output rule as we did in the previous example:
20 25 2401

SOUTH 5 9
h SOUTH(+2+ h) = — — h
- (F2+h) =35~ e L
from which we get:
Output
Ruler A
Screen
_20
5

>Input
+2 Ruler




Chapter 19

Rational Functions: Global
Analysis

The Essential Question, 353 e Locating co-Height Inputs, 354 e Offscreen
Graph, 359 e Feature-sign Change Inputs, 361 e Global Graph,
362 e Locating 0-Height Inputs, 363 .

Contrary to what we were able to do with polynomial functions, with ra-
tional functions we will not be able to establish global theorems. Of course,
we did not really establish global theorems for all polynomial functions ei-
ther but only for polynomial functions of a given degree, 0, 1, 2 and 3. But,
in the case of rational functions, even the rational degree will not separate
rational functions into kinds that we can establish global theorems for inas-
much as even rational functions with a given rational degree can be very
diverse.

So, what we will do here is to focus on how to get global information
about any given rational function.

1 The Essential Question

Given a rational function, as with any function, the offscreen graph will

consist:

e certainly of the local graph near co. This is because, as soon as the input
is large, the graph point is going to be left or right of the screen and
therefore offscreen regardless of the size of the output,

353
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e possibly of the local graph(s) near certain bounded input(s). This is be-
cause, in case the outputs for inputs near certain bounded inputs are
large, the graph points will then be above or below the screen and there-
fore offscreen even though the inputs are bounded.

So, as always, we will need to ascertain whether

e There might be bounded inputs for which nearby inputs will have a large
output ,

or, as was the case with all polynomial functions,

e The outputs for any bounded input are themselves necessarily bounded
In other words, in order to get the offscreen graph, we must begin by asking
the Essential Question:

e Do all bounded inputs have bounded outputs
or

e Is there one (or more) bounded input which is an oo-
height input, that is, a bounded input whose nearby
inputs have unbounded outputs?

And, indeed, we will find that there are two kinds of rational functions:

e rational functions that do have oco-height input(s)

e rational function that do not have any oo-height input as was the case
with power functions and polynomial functions.

2 Locating oo-Height Inputs

However, given a rational function, not only will we need to know whether
or not there exists oo-height input(s), if there are any, we will also have
to locate the oo-height inputs, if any, because we will need to get the local
graph near these co-height input(s). More precisely:

1. Given a rational function RAT specified by a global input-output rule

RAT NUMERATORRAT(;C)
v RAT(z) = DENOMINATORpar ()

we want to find whether or not there can be a bounded input xy such that
the outputs for nearby inputs, g + h, are large. In other words, we want to
know if there can be zg such that

RAT

h ———— RAT(z)|,, 4 n = large
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But we have
NUMERATORRpar ()
DENOMINATORgr(z)

_ NUMERATORRAT(%)|ypyin
DENOMINATORRa1(%)| 4 yyin
NUMERATORR a7 (0 + h)
~ DENOMINATORpaz(z0 + I)
So, what we want to know is if there can be an z( for which
NUMERATORp a7 (xo + h)
DENOMINATORgar(zo + h)

2. Since it is a fraction that we want to be large, we will use the Divi-
sion Size Theorem from Chapter 2:

RAT ()| -

x<x0+h
zx0+h

= large

THEOREM 2 (Division Size)

large . large large
= any size ———— = large = large
large medium small
medium medium ) medium
—— = small ———— = medium —— = large
large medium small
small small small .
= small —— = small = any size
large medium small

There are thus two ways that a fraction can be large:

e When the numerator is large
e When the denominator is small

In each case, though, we need to make sure of the other side of the fraction.
So, rather than look at the size of both the numerator and the denominator
at the same time, we will look separately at:

e The first row, that is when the numerator of the fraction is large

large large large
= any size ——— =large =large
large medium small
medium medium . medium
—— = small ————— =medium — =large
large medium small
small small small )
= small —— = small = any size
large medium small

because in that case all we will then have to do is to make sure that the
denominator is not large too.
e The last column, that is when the denominator of the fraction is small.
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large ) large large
= any size —— =large =large
large medium small
medium medium . medium
—— = small ——— =medium ——— =large
large medium small
small small small )
= small ——— = small = any size
large medium small

because in that case all we will then have to do is to make sure that the
numerator is not small too.

. NUMERATORR T (x0+h)
3. We now deal Wlth DENOMINATORRAT($O+}L)’

numerator and the denominator:

Since the numerator, NUMERATORRaT(xo + h), is the output of a
polynomial function, namely

looking separately at

NUMERATORRAT

» NUMERATORRpar(x)

and since we have seen that the only way the outputs of a polynomial
function can be large is when the inputs are themselves large, there is
no way that NUMERATORRar(xo+h)) could be large for inputs that
are bounded. So there is no way that the output of RAT could be large
for bounded inputs that make the numerator large and we need not look
any further.

Since the denominator, DENOMINATORRgar(xo + h), is the output
of the polynomial function

DENOMINATORRAT

DENOMINATORRpar(x)

and since we have seen that polynomial functions can have small outputs
if they have 0-height inputs and the inputs are near the 0-height inputs,

DENOMINATORRaT(z0+h) can be small for certain bounded inputs

NUMERATORR a7 (zo+h) .
and thus so can DENOMINATOR par(z0+h) " However, we will then have

to make sure that NUMFERATORRgar(xo + h), is not small too near
these bounded inputs, that is we will have to make sure that xy does not
turn out to be a 0-height input for NUMFERATORRaT as well as for
DENOMINATORRaT so as not to be in the case:

small

= any size
small

We will thus refer to a 0-height input for DENOMINATORRrAT as
only a possible oco-height input for RAT

Altogether, then, we have:
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THEOREM 19.1 Possible oco-height Input The 0-height inputs of
the denominator of a rational function, if any, are the only possible
00-height inputs for the rational function.

4. However, this happens to be one of these very rare situations in
which there is “an easier way”: After we have located the 0-height in-
puts for DENOMINATORRaT, instead of first making sure that they
are not also 0-height inputs for NUM ERATORR a7, we will gamble and
just get the local input-output rule near each one of the 0-height inputs for
DENOMINATORRar. Then,

e If the local input-ouput rule turns out to start with a negative-exponent
power function, then we will have determined that zg is an oo-height
input for RAT and the payoff will be that we will now get the local
graph near xg for free.

e If the local input-ouput rule turns out not to start with a negative-
exponent power function, then we will have determined that zy is not
a oo-height input for RAT after all and our loss will be that we will
probably have no further use for the local input-output rule.

Overall, then, we will use the following two steps:

Step i. Locate the 0-height inputs for the denominator,
DENOMINATORRar(z), by solving the equation

DENOMINATORgaT(z) =0

Step ii. Compute the local input-output rule near each one
of the 0-height inputs for the denominator, if any.

The advantage is that we need not even refer to the Division Size Theo-
rem: once we have a possible co-height input, we just get the local input-
output rule near that possible co-height input, “for the better or for the
worse”.

EXAMPLE 19.1. Let COUGH be the function specified by the global
input-output rule
COUGH xt— a3 — 1022+ 2 — 15

xr ————— COUGH (z) = TPt 6

locate the co-height input(s) of COUGH, if any.
Step i. The possible co-height input(s) of COUGH are the 0-height input(s)
of DENOMINATORcouvcu(x), that is the solution(s), if any, of the equa-
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tion

22+ 52 +6=0
In general, solving an equation may or may not possible but in this case, the
equation is a quadratic one and we have learned how to do this in Chapter
12. One way or the other, we find that there are two solutions:

-3,-2

which are the possible co-height inputs of the rational function COUGH.
Step ii. We compute the local input-output rules near —3 and near —2:

e Near —3:
near — 4 3_10 2 _15
h COUGH 3 COUGH(—S—i—h)z x x r°+x

22+ 52+ 6
zt —2® —102% + 2 — 15‘zei3+h
22 +52+6[, 5.,
(=3+h)* = (=3+h)>—10(-34+h)>+(-3+h)—15
(=3+h)2+5(-3+h)+6
We try to approximate to the constant terms:
(=3 ) = (=33 + ) —10(=3)2 + [ =3+ ] —15
B (=3)2+ [..] +5(=3) +[...] +6
481 427-90-3-15+[.. ]
B +9— 1546+ [...]

r——3+h

0+
0+[.]

_ [

= any size

So we must go back and try to approximate to the linear terms, ignoring
the constant terms since we just saw that they add up to 0 both in the
numerator and the denominator:

4(=3)3h +[...] =3(=3)%h+[.] —=10-2(=3)h + [..] + h
2-(—=3)h + [...] + 5h
~108h + [...] = 27h 4 [..] + 60h + [..] + h
—6h + [..] + 5h

—74h +[..]
—h+[..]
= 474+ .]
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so that —3 is not an oo-heigth input

o Near —2:
near — 4 23— 1022 —15
h COUGH 2 COUGH(—2+h): x x _ x°+x
T+ 5xr+6 se—2th
x4—m3—10x2+$—15]m__2+h

2 + 5z + 6|ac<——2+h
(=24 R — (24 h)3—10(—2+h)?+ (—2+h) — 15
(=2+h)2+5(-2+h)+6
We try to approximate to the constant terms:
(=24 + ] = (=23 +[.] = 10(=2)2 +[..] =2 +[.] - 15
(=2)2+[..]+5(-2)+[..]+6
+16+8—-40—2—15+...]
+4—-104+6+[...]
—33+1..]
0+1..]
—-33
[...]

= large

So —2 is an oo-height input for COUGH and we need only find exactly

how small [...] is to get the local input-output rule near —2
B —33+[..]
2. (=2)h+[...] +5h
=334
 h+]
=331 4[]

3 Offscreen Graph

Once the Essential Question has been answered, and if we do not already
have the local input-output rule near each one of the co-height inputs, we
need to get them and the corresponding local graphs so that we can then
join them smoothly to get the offscreen graph.

Altogether, given a rational function RAT the procedure to obtain the
offscreen graph is therefore:
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i. Get the approximate input-output rule near oo and the local graph
near oo

ii. Answer the Essential Question and locate the oo input(s), if any,

iii. Find the local input-output rule and then the local graphs near each
oo-height inputs

EXAMPLE 19.2. Let MARA be the function specified by the global
input-output rule
MARA xz—15

Find the offscreen graph.
i. We get the local approximation near oc:

Near oo, z 1484, MARA(z) = ot ]

2 4 [..]
—1
=4z +[.]
and the local graph near co of M ARA is
OutputA
Ruler
Offscreen Space
Screen
1 _—
P
Input
ZRuler

ii. We locate the oo-height inputs, if any. The possible oo-height input(s) of
M ARA are the 0-height input(s) of DENOMINATORara(z), that is the
solution(s), if any, of the equation

22 +5x4+7=0
In general, solving an equation may or may not possible but in this case, the
equation is a quadratic one and we have learned how to do this in Chapter
12. One way or the other, we find that there are no solution. So, the function
M ARA has no oco-height input.
iii. The offscreen graph therefore consists of only the local graph near oco.
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4 Feature-sign Change Inputs

Given a rational function, in order to get the feature-sign change input(s), if

any, we need only get the outlying graph and then we proceed as in Chapter
3 so we need only give an example.

EXAMPLE 19.3. Let MARA be the function specified by the global
input-output rule
MARA z—15
————— MARA(x) = ———
(z) 22+ 5+ 7

Find the feature-sign change inputs of M ARA, if any.
i. We find the offscreen graph of M ARA as in the preceding example:

OutputA
Ruler

Offscreen Space

Screen

Input
“Ruler

ii. We mark the features of the offscreen graph:
OutputA
Ruler

Offscreen Space

Screen

Input
”Ruler

ili. Therefore:
e there must be at least one height-sign change input,
e there does not have to be a slope-sign change input
e there must be at least one concavity-sign change input,
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5 Global Graph

Given a rational function, in order to get the essential global graph, we need
only get the outlying graph and then we join smoothly so we need only give
an example.

EXAMPLE 19.4. Let MARA be the function specified by the global
input-output rule
MARA x—15
———— MARA(x) = ————
v @) = e +7
Find the feature-sign change inputs of M ARA, if any.
i. We find the offscreen graph of M ARA as in the preceding example:

Outputh
Ruler
Offscreen Space

Screen

“J/nput
Ruler

ii. We join smoothly the offscreen graph:
OutputA
Ruler
Offscreen Space

Screen

Input
ZRuler

iii. Observe that, in fact,
e there must be at least one height-sign change input,
e there must be at least two slope-sign change inputs
e there must be at least three concavity-sign change input,
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OutputA
Ruler
Offscreen Space

Screen

Input
”Ruler

6 Locating 0-Height Inputs

Locating the 0-height inputs of a given rational function is pretty much the
mirror image of what we did to locate its co-height inputs. More precisely:
1. Given a rational function RAT specified by a global input-output rule
RAT NUMERATORRar(x)
‘ RAT(2) = 5 ENOMINATO Riar(s)
we want to find whether or not there can be a bounded input xy such that
the outputs for nearby inputs, xo + h, are small. In other words, we want

to know if there can be xg such that
RAT

h _— RAT('I)|$H$0+]‘L = Small
But we have
NUMERATORRAT(x)
AT =
R (-T)|x<—xo+h DENOMINATORRAT(x) az0+h
B NUMERATORRAT($)|x<_xO+h
o DENOMINATORRAT(QU)\IEH%JF}L

_ NUMERATORRar(xo + h)
 DENOMINATORRAT(z0 + h)
So, what we want to know is if there can be an xg for which
NUMERATORRaAr(x0 + h)
DENOMINATORRa7(x0 + h)
2. Since it is a fraction that we want to be small, we will use the Divi-
sion Size Theorem from Chapter 2:

= small

THEOREM 2 (Division Size)



364 Chapter 19. Rational Functions: Global Analysis
large ) large large
= any size ———— = large = large
large medium small
medium medium . medium
—— = small —— = medium —— = large
large medium small
small small small )
= small ——— = small = any size
large medium small

There are thus two ways that a fraction can be small:

e When the numerator is small

e When the denominator is large
In each case, though, we need to make sure of the other side of the fraction.
So, rather than look at the size of both the numerator and the denominator
at the same time, we will look separately at:

e The third row, that is when the numerator of the fraction is small

large ) large large
= any size ———— = large = large
large medium small
medium medium ) medium
——— = small ————— =medium ——— = large
large medium small
small small small .
= small ——— = small = any size
large medium small

because in that case all we will then have to do is to make sure that the
denominator is not small too.
e The first column, that is when the denominator of the fraction is large.

large . large large
= any size ———— = large = large
large medium small
medium medium . medium
——— = small ————— =medium ——— =large
large medium small
small small small .
= small ——F— = small = any size
large medium small

because in that case all we will then have to do is to make sure that the

numerator is not large too.
. NUMERATORR a1 (zo+h)
3. We now deal with pErGrTNATOR AL (w04 7)

the numerator and the denominator:
e Since the numerator, NUMERATORRrar(xo + h), is the output of a

polynomial function, namely
NUMERATORR AT

looking separately at

y NUMERATORgar(z)
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and since we have seen that polynomial functions can have small outputs
if they have 0-height inputs and the inputs are near the 0-height inputs,

NUMERATORRar(x0 + h) can be small for certain bounded inputs

NUMERATORRAT(CBOJF}Z) .
and thus so can DENOMINATO R par(z0+h) " However, we will then have

to make sure that DENOMIN ATORpgar(zo+h), is not small too near
these bounded inputs, that is we will have to make sure that xzg does not
turn out to be a 0-height input for DENOMINATORRar as well as
for NUMERATORRAT so as not to be in the case:

small

= any size
small

We will thus refer to a 0-height input for NUM ERATORRar as only a

possible 0-height input for RAT.

Since the denominator, DENOMINATORRar(xo + h), is the output

of a polynomial function, namely
DENOMINATORR a7

DENOMINATORpar(z)

and since we have seen that the only way the outputs of a polynomial
function can be large is when the inputs are themselves large, there is
no way that DENOMINATORRar(xo + h)) could be large for inputs
that are bounded. So there is no way that the output of RAT could be
small for bounded inputs that make the denominator large and we need
not look any further.

Altogether, then, we have:

THEOREM 19.2 Possible 0-height Input The 0-height inputs of
the numerator of a rational function, if any, are the only possible
0-height inputs for the rational function.

4. However, this happens to be one of these very rare situations in

which there is “an easier way”: After we have located the 0-height in-
puts for NUMERATORRaT, instead of first making sure that they are
not also O-height inputs for DENOMINATORRaT, we will gamble and
just get the local input-output rule near each one of the 0-height inputs for
NUMERATORR 7. Then,

e If the local input-ouput rule turns out to start with a positive-exponent
power function, then we will have determined that xg is a 0-height input
for RAT and the payoff will be that we will now get the local graph near
xq for free.

e If the local input-ouput rule turns out to start with a 0-ezponent power

0-height input
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function or a negative-exponent power function, then we will have deter-
mined that xg is not a 0-height input for RAT after all and our loss will
be that we will probably have no further use for the local input-output
rule.

Overall, then, we will use the following two steps:

Step i. Locate the O0-height inputs for the mnumerator,
NUMERATORRar(x), by solving the equation

NUMERATORgp(z) =0

Step ii. Compute the local input-output rule near each one
of the 0-height inputs for the numerator, if any.

The advantage is that we need not even refer to the Division Size The-
orem: once we have a possible 0-height input, we just get the local input-
output rule near that possible 0-height input, “for the better or for the
worse”.

EXAMPLE 19.5. Let TARA be the function specified by the global input-
output rule
TARA z® —8
r ——— TARA(z) = 2132210
locate the 0-height input(s) if any.
Step i. The possible 0-height input(s) of TARA are the 0-height input(s) of
NUMERATORrArA(x), that is the solution(s), if any, of the equation
2> —8=0
In general, solving an equation may or may not possible and in this case, the
equation is a cubic one. Still, here it is a very incomplete one and we can
see that the solution is +2 which is the possible 0-height input of the rational
function TARA.

Step ii. We compute the local input-output rule near +2.

38
p AR e 3 AR A(+2 4 B) = ﬁ
T°+ 3x — x4+2+h
P8 o
22 +32— 100, o,y
(+2+h) -8

(+2+h)2 +3(+2+ h) — 10
We try to approximate to the constant terms:
(+2)3 +[...] -8
(+2)2 + [...] +3(+2) + [...] — 10
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48— 8+4[.]
C 44+6—-10+.]
_ 0 - = L] = any size

So we must go back and approximate to the linear terms, ignoring the constant
terms since we just saw that they add up to O both in the numerator and the
denominator:

o 3(4+2)%h + [..]

~ 2(+2)h 4[] + 3R

_ H12 4[] H12h+ ]

4 4h+ [ +3h T +Th 4]

12

and, since +12 # 0, 42 is not an 0-heigth input for TARA.
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Where to from here on?

e Derived functions

e Functions defined equationally

e Matters of size e.g. the bigger the size of the exponent, the boxier the
graph
Check that reciprocity has been moved correctly to Chapter 7

1 Looking Back

Until now, the global graph of each new kind of function was qualitatively
very different as we moved from one kind of functions to the next.
1. In the case of the power functions, we found that the qualitative

features of the global graphs of
i. regular positive-exponent power functions,
ii. negative-exponent power functions,
iii. exceptional power functions, that is

- 0-exponent power functions

- l-exponent power functions
were very different but the differences among power functions of any partic-
ular type were not really that great in that, from the point of view of the
shape of the global graph, there were really only four types of regular power
functions (depending on the sign and the parity of the exponent) and only

369
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two types of exceptional power functions (depending on the parity of the
exponent).

2. In the case of the polynomial functions, we found that the qualitative
features of the global graphs changed a lot when we moved from one degree
to the next:

i. The global graph of a constant function (Degree 0)

- has no height-sign change input, (same height everywhere)

- has no slope,

- has no concavity,
ii. The global graph of an affine function (Degree 1)

- always has exactly one height-sign change input,

- has no slope-sign change input, (same slope everywhere)

- has no concavity,
iii. The global graph of a quadratic function (Degree 2)

- may or may not have height-sign change input(s),

- always has exactly one slope-change input,

- has no concavity-sign change input, (same concavity everywhere)
iv. The global graph of a cubic function (Degree 3)

- has at least one height-sign change inputs,

- may or may not have slope-change input(s),

- has exactly one concavity-sign change input,
As for the qualitative differences among the global graphs of polynomial
functions of a same degree, they are not great—but growing along with the
degree.

i. The difference among constant functions is the height of the global graph.

ii. The differences among affine functions are the height and the slope of
the global graph.

iii. The differences among quadratic functions are the height, the slope and
the concavity of the global graph.

iv. The differences among cubic functions are not only the height, the slope
and the concavity of the global graph but also whether or not there is a
bounded fluctuation.

Thus, in terms of content organization, the degree of polynomial functions

was a very powerful organizer if only because this allowed us introduce the

features, height, slope, concavity, one at a time.

The emphasis throughout will be to convince ourselves of the need to
proceed very systematically while keeping our eyes open so as to take ad-
vantage of whatever might make our life easier and not to do anything that
we do not absolutely have to do.
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2 Looking Ahead

We will now say a few words about the way rational functions will be dealt
with in the rest of this text.

1. While, so far, we have had a very transparent content organization,
in contrast, in the case of rational functions, the rational degree will not
be such a powerful organizer because the four different types of rational
functions will not be markedly different.

Still, in each one of the next four chapters, we will investigate a given type
of rational function but this will be mostly in order not to upset the reader
with too much variety from the get go. However, we will not be able to
develop much of a theory for each type and we will mostly go about gath-
ering experience investigating rational functions without paying too much
attention to the type of rational function being dealt with, taking things as
they come.

On the other hand, the differences among rational functions of any given
type of rational degree, will be quite significant because of the possible oco-
height inputs.

Thus, the other side of the coin will be that, while, until now, once we had
a theory of a kind of function, the investigation of this kind of functions
quickly became a bit boring in that we knew what the overall global graph
was going to look like, in the case of rational functions, there will be a much
more interesting diversity.

2. Before anything else, it should be stressed that in the investigations
of any given rational function we will follow essentially the exact same ap-
proaches that we used in the investigation of any given power function and
of any given polynomial function: We will thus

i. get its local graph near oo,

ii. get the answer to the ESSENTIAL QUESTION and find the oco-height in-
put(s), if any. (This will involve solving an equation.)

iii. get the local graph near the oco-height inputs, if any.

iv. get the global graph by interpolating the local graph near oo and
the local graphs near the co-height inputs, if any.

3. As happened each time we investigated a new kind of function, finding
the local rule near bounded inputs—and therefore near oco-height input(s)—
will require a new algebra tool.

4. As with any function, rational or otherwise, what we will actually do
will depend of course on what information we need to find and there are
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going to be two main kinds of questions:
a. Local questions, that is, for instance:

e Find the local concavity-sign near a given input,

e Find the local slope-sign near a given input,

e Find the local height-sign near a given input,

e Find the local graph near a given input,
The given input can of course be any input, that is co or any given bounded
input, for instance an oo-height input, a concavity-sign change input, a
slope-sign change input, a height-sign change input or any ordinary input
whatsoever.
b. Global questions, that is, for instance
Find the concavity-sign change input(s), if any
Find the slope-sign change input(s), if any
Find the height-sign change input(s), if any
Find where the output has a given concavity-sign
Find where the output has a given slope-sign
Find where the output has a given height-sign
Find the global graph
In the case of global questions, it will usually be better to start by get-
ting the bounded graph and then to get the required information from the
bounded graph. But then of course, since the bounded graph is really only
the essential bounded graph, that is the graph that is interpolated from the
outlying graph, the global information that we will get will only be about
the essential features that is the features forced onto the bounded graph by
the outlying graph.

The curious reader will obviously have at least three questions:

i. How do the various power functions compare among each other?

ii. What of polynomial functions of degree higher than 3?

iii. What of Laurent polynomial functions?

In the “overview”, we will discuss the several manners in which regu-
lar positive-power functions, negative-power functions and exceptional-power
functions all fit together. This will require discussing the size of slope.

3 Reciprocity Between 0 and oo
We will now investigate the relationship between 0 and oo

1. Reciprocal Function The reciprocal function is the power
function with exponent —1 and coefficient +1, that is the function whose
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global input-output rule is reciprocal
RECIPROCAL _, RECTPROCAL(z) = (+1)z !
1
= 4-
T

so that the output is the reciprocal of the input (hence the name).

1. The first thing about the reciprocal function is that it is typical of
negative-exponent power functions in terms of what it does to the size of
the output:

+large —BECIPROCAL | ppCTPROCAL(large) = +small
—large RECIPROCAL RECIPROCAL(large) = —small

and
+small —BECIPROCAL . ppCTPROCAL(small) = +large
—small —ECIPROCAL . ppoTPROCAL(small) = —large

2. More generally, the global graph of the reciprocal function is:
e Mercator picture:

Outpout A\

Ruler

Screen

> Input Ruler

e Magellan picture:
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3. Although quite different from the identity function, the reciprocal
functions does play a role in the family of all power functions that is quite
similar in some respects to the role played by the identity function

For instance, because the size of the exponent in both cases is 1, they are
both the “first” of their kind.

However, that is not very important because:

e The identity function is not prototypical of the other power functions
because the identity function is a linear function and has no concavity.

EXAMPLE 19.6. The identity function lack concavity while all regular
power function have concavity.

e The reciprocal function is prototypical of the other negative power func-
tions in many ways.

EXAMPLE 19.7. The shape of the reciprocal function is essentially the
same as the shape of all (negative-exponent) power functions of type NOP

One thing the identity function and the reciprocal function have in common,
though and for what it’s worth at this time, is that the reciprocal function
is the mirror image of itself when the mirror is the identity function.
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Output
Ruler

/

>

Screen

Reciprocal Function

> Input Ruler

In particular, they intersect at a 90 degree angle.

Output
Ruler

A

>

Screen

90 degrees

90 degrees

Reciprocal Function

> Input Ruler

Another way way to look at it is that the local graphs near +1 are locally
mirror images of each other when the mirror is the input level line for +1:
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far, Output A
reciprocal of each other Ruler
Screen
+ 45 degrees 45 degrees
e —————
0 A
&00 Reciprocal Function
S,
& ]
RS

> Input Ruler

2. Reciprocity
1. It will be convenient to introduce two new terms:
e We introduced the word “near” almost from the begining and, with
Magellan graphs in mind, we will now introduce the word “far”. Thus,
— When an input is large, it is near oo and therefore far from 0,
— When an input is small, it is near 0 and therefore far from oo.
e More generally, we will say that two power functions are reciprocal of
each other when:
— their coefficient are the same,
— the size of their exponents are the same,
— the sign of their exponents are the opposite.
In other words, two power functions are reciprocal of each other whenever
they differ only by the sign of their exponents.

EXAMPLE 19.8. The identity function and the reciprocal function are
reciprocal.

We will see that, when the mirror is the input level line for +1, the local
graphs near +1 of two power functions that are reciprocal of each other
are approximately mirror images of each other. But the angles will not
be 45 degrees anymore.
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2. The point of all this is that the local graph near oo of a regular power
function is the same as the local graph near 0 of the power function that
it is reciprocal of and, vice versa, the local graph near 0 of a regular power
function is the same as the local graph near oo of the power function that
it is reciprocal of.

EXAMPLE 19.9. Given the local graph near 0 of JACK, an odd positive
power function with positive coefficient :
0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more closing down the gap until the edges touch.

closing

bending Foo +oo S~
enlarging - 9

00 +00

—> L \¥:

—0o0

=

+00 o o

S
i

We then glue shut the edges of the screen at oo to get a cylinder.
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\{\ glue

Then we turn the cylinder half a turn so that oo gets to be in front of us:
rotating

cut

We widen out and unbend the screen forward more and more until it becomes
flat.
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ﬂ widen out unbend

0" +00 —0 0

is exactly like the local graph near 0 of JACK's reciprocal power function
which is an odd positive power function with positive coefficient:
|

—o0 0" 0" +00
(On both graphs, outputs for negative inputs are negative and outputs for
positive inputs are positive.)

EXAMPLE 19.10. Given the local graph near 0 of the even positive power
function JILL:
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We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more until the edges touch.

. closing
enlarging
0
«<— ; +oo0 —>
|
i
i
i
i - _
i
|
|
< 0 —> 0

We then glue the edges of the screen at oo to get a cylinder.

i\ glue

Then we turn the cylinder half a turn so that oo gets to be in front of us:
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rotating

Now we cut the cylinder open along the input level line for 0

cut

We unbend the screen forward more and more until it becomes flat.

widen out unbend shrink

0+ 0. —
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The local graph near oo that we get (Remember that the left side of oo is the
positive side of oo and the right side of oo is the negative side of c0):

is just like the local graph near 0 of JILL's reciprocal power function which is
a negative, even-exponent power function:

0
!
J ! \
|
i
i
S I . 4_
i
i
|
000 0F
EXAMPLE 19.11. Given the local graph near 0 of the even positive power
function JACK:
0
|
|
i
i
e ‘ ,,,,,,,, .-
i
i
|
0

We enlarge the extent of the input ruler more and more while shrinking the scale
by the edges more and more and, as we do so, we bend the screen backward
more and more until the edges touch.
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losi
bending closing

o +oo €
SR

enlarging

Then we turn the cylinder half a turn so that co gets to be in front of us:
rotating

s

Now we cut the cylinder at 0
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and we unbend the screen forward more and more until it becomes flat.

unbend
widen out o+ 0

The local graph near oo that we get (Remember that the left side of oo is the

positive side of co and the right side of co is the negative side of c0):
o0

e ———|

400 o0 —o0

is just like the local graph near 0 of JACK's reciprocal power function which
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is an even positive power function:

4 The Family of Power Functions

The following is more of an informative nature at this stage than something
that we will be building on in this text. The purpose here is mostly to give
some coherence to all the power functions by showing various ways in which
they fit together. It should help the reader organize her/his vision of power
functions.

1. Types of Regular Functions This is just a recapitulation of
stuff we saw in the preceding two chapters:

Sign exponent | Parity exponent | Sign coefficient | TYPE

Even + PEP

" — PEN
+ POP

Odd — PON

Fven + NEP

B — NEN
+ NOP

Odd — NON

2. What Power Functions Do To Size We will say that a function
is size-preserving when the size of the output is the same as the size of
the input, that is “small gives small” and “large gives large”.

size-preserving



size-inverting
fixed point
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EXAMPLE 19.12. Regular positive-exponent power functions are size-
preserving:

Correspondingly, we will say that a function is size-inverting when the
size of the output is the reciprocal of the size of the input, that is “small
gives large” and “large gives small”.

EXAMPLE 19.13. Negative-exponent power functions are size-inverting:

By contrast, with exponent-zero power functions, the output for small
inputs has size 1 and so is neither small nor large and so exponent-zero power
functions are neither size-preserving nor size-inverting. You might say that
they are “size-squashing”.

Thus, in a way, constant functions separate regular positive-exponent power
functions from negative-exponent power functions.

On the other hand, even though linear functions are exceptional, they
are nevertheless size-preserving.

3. Fixed point A fixed point for a function is an input whose out-
put is equal to the input.

EXAMPLE 19.14. Given the identity function, every input is a fixed point.
In particular, both 0 and +1 are fixed points.

EXAMPLE 19.15. 0 is a fixed point for all regular power functions.

EXAMPLE 19.16. +1 is a fixed point for all regular power functions.
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) template
EXAMPLE 19.17. —1 is a fixed point for all regular even-exponent power

functions.

5 The bigger the size of the exponent the boxier
the graph

We will call template something that looks like it could be the graph of a
regular power function except that it is not a function because the inputs —1
and +1 both have an unbounded number of outputs. Each type of regular
power function has its own template.

1. We begin by comparing power functions with their template two at

a time.
EXAMPLE 19.18. The positive-even-exponent power function whose global
input-output rule is
POWER
x s POWER 4(z) = 42t

is much closer to its template than the positive-even-exponent power function

whose global input-output rule is

z —LPOVERE | pOWER. 5(2) = +a2

-1 0 +1

EXAMPLE 19.19. The positive-odd-exponent power function whose global
input-output rule is
POWER,s5

POWER,5(z) = +a™
is much closer to its template than the positive-odd-exponent power function
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whose global input-output rule is
POWER,3

EXAMPLE 19.20. The negative-even-exponent power function whose
global input-output rule is
POWER_4

POWER, 5(z) = +a~*
is much closer to its template than the negative-even-exponent power function

whose global input-output rule is

o —LPOVER2 | pOWER_s(z) = +a2
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EXAMPLE 19.21. The negative-odd-exponent power function whose global
input-output rule is
POWER_
T > POWER_3(x) = +x~3
is much closer to its template than the negative-odd-exponent power function

whose global input-output rule is

z —LOVERY L pOWER () = 4o~

6 Local Quantitative Comparisons

1. Local quantitative comparison near oo
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[+x?]

Even positive-power functions
go through the input-output pair
(=1L+1)_

[ +x+2] [ +x+3]

/
[+x+1]

Even and odd positive-power functio
/ go through the input-output pair (+1

[+x0]

[+x0]

Odd positive-power functions
go through the input-output pair
(-1,-1)

[+x*1]

[+x*3]

2. Local quantitative comparison near +1
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14-
13-
12-
11-

104

391

- [e]

-]

— [x+10]

— ]

0 0.25 0.50 0.75

Local quantitative comparison near 0, between —0.1 and +0.1
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+0.01 Ty
[J’fh“]
ol
S
0.00 L.
-0.01

+0.1

7 Global Quantitative Comparisons

1. Global quantitative comparison between —1 and +1

0.0 :
~1.0 o

-1.0 0.0 0.1 +1.0

2. Global quantitative comparison between —1 and +1
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+1.0

0.0

-1.0

1. Symmetries Of Power Functions



394 Chapter 19. Rational Functions: Global Analysis

[+x71] [+x2]

T

]

[++°]
[+x1]

[+]
[+2]

[+x7']

2. Coverage By Power Functions
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7. Global Quantitative Comparisons

[a!] [c2] 3] | ot ][] [
[4x+573]

[+ ol .5]

[+x*!]

Observe that there are graphs of power functions whose exponent is a
fraction or a decimal number and that these graphs are exactly where we
would expect them to be based on the way the fractional or decimal exponent
fits with the whole number exponents. This, though, is a something that
will be investigated in the next volume:
textscReasonable Transcendental Functions.
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Appendix A

Localization

Inputs are counted from the origin that comes with the ruler. However,
rather than counting inputs relative to the origin of the ruler, it is often
desirable to use some other origin to count inputs from.

399
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Reverse Problems

Reverse problems are called that way because, in a reverse problem, what
is GIVEN is the feature that the outputs are to have and what is WANTED
are the inputs for which the function returns outputs with the given feature
so that

401

Reverse problem
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Appendix C

Addition Formulas

1 Dimension n = 2: (x¢ + h)? (Squares)

In order to get

403
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Appendix D

Polynomial Divisions

Division in Descending Exponents, 405.

1 Division in Descending Exponents

Since decimal numbers are combinations of powers of TEN, it should not be
surprising that the procedure for dividing decimal numbers should also work
for polynomials which are combinations of powers of x.

405
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Version 1.2, November 2002
Copyright (©)2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is

415
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not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
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a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorse-
ments", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to
this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensa-
tion in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify
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you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.



0.

419

Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and required

Cover Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to

a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

. For any section Entitled "Acknowledgements" or "Dedications", Preserve the

Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered part of the
section titles.

. Delete any section Entitled "Endorsements". Such a section may not be included

in the Modified Version.

. Do not retitle any existing section to be Entitled "Endorsements" or to conflict

in title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing

but endorsements of your Modified Version by various parties—for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
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Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the
various original documents, forming one section Entitled "History"; likewise combine
any sections Entitled "Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,
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is called an "aggregate" if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later
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version" applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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